
DBMS
Database Management System

What is DBMS

• Data : collection of facts

• Example : I got 60 mks in maths is a fact

• My salary is Rs 90,000 is a fact

• What is a Database?

• A database is a collection of related data which
represents some aspect of the real world.

• A database system is designed to be built and
populated with data for a certain task.

What is DBMS?

• Database Management System (DBMS) is a
software for storing and retrieving users' data
while considering appropriate security
measures. It consists of a group of programs
which manipulate the database. The DBMS
accepts the request for data from an
application and instructs the operating system
to provide the specific data.

• DBMS allows users to create their own
databases as per their requirement. The term
“DBMS” includes the user of the database and
other application programs. It provides an
interface between the data and the software
application.

Example of Databases

• University database
• Train database
• Flight database
• Aadhar database
• Passport database
• Hospital database
• Books database
• Banking
• Sales/HR/Manufacturing/Telecommunication

Popular DBMS Software

• Here, is the list of some popular DBMS system:
• MySQL
• Microsoft Access
• Oracle
• PostgreSQL
• dBASE
• FoxPro
• SQLite
• IBM DB2
• LibreOffice Base
• MariaDB
• Microsoft SQL Server etc.

History of DBMS

• Here, are the important landmarks from the history:
• 1960 - Charles Bachman designed first DBMS system
• 1970 – E.F Codd introduced IBM'S Information Management System

(IMS)
• 1976- Peter Chen coined and defined the Entity-relationship model

also know as the ER model
• 1980 - Relational Model becomes a widely accepted database

component
• 1985- Object-oriented DBMS develops.
• 1990s- Incorporation of object-orientation in relational DBMS.
• 1995: First Internet database applications
• 1997: XML applied to database processing. Many vendors begin to

integrate XML into DBMS products.

Characteristics of Database
Management System

• Provides security and removes redundancy
• Self-describing nature of a database system
• Insulation between programs and data abstraction
• Support of multiple views of the data
• Sharing of data and multiuser transaction processing
• DBMS allows entities and relations among them to

form tables.
• It follows the ACID concept (Atomicity, Consistency,

Isolation, and Durability).
• DBMS supports multi-user environment that allows

users to access and manipulate data in parallel.

Types of DBMS

• Types of DBMS

• Four Types of DBMS systems are:

• Hierarchical database

• Network database

• Relational database

• Object-Oriented database

• In a Hierarchical database, model data is
organized in a tree-like structure. Data is Stored
Hierarchically (top down or bottom up) format.
Data is represented using a parent-child
relationship. In Hierarchical DBMS parent may
have many children, but children have only one
parent.

• Advantages
• The design of the hierarchical model is simple.
• Provides Data Integrity since it is based on parent/

child relationship
• Data sharing is feasible since the data is stored in a

single database.
• Even for large volumes of data, this model works

perfectly.
• Disadvantages
• Implementation is complex.
• This model has to deal with anomalies like Insert,

Update and Delete.
• Maintenance is difficult since changes done in the

database may want you to do changes in the entire
database structure.

Network Model

• The network database model allows each child to
have multiple parents. It helps you to address the
need to model more complex relationships like as
the orders/parts many-to-many relationship. In
this model, entities are organized in a graph
which can be accessed through several paths.

• Advantages

• Easy to design the Network Model

• The model can handle one-one, one-to-many,
many-to-many relationships.

• It isolates the program from other details.

• Based on standards and conventions.

• Disadvantages

• Pointers bring complexity since the records
are based on pointers and graphs.

• Changes in the database isn’t easy that makes
it hard to achieve structural independence.

Relational model

• Relational DBMS is the most widely used
DBMS model because it is one of the easiest.
This model is based on normalizing data in the
rows and columns of the tables. Relational
model stored in fixed structures and
manipulated using SQL.

• Advantages
• The Relational Model does not have any issues that we

saw in the previous two models i.e. update, insert and
delete anomalies have nothing to do in this model.

• Changes in the database do not require you to affect
the complete database.

• Implementation of a Relational Model is easy.
• To maintain a Relational Model is not a tiresome task.
• Disadvantages
• Database inefficiencies hide and arise when the model

has large volumes of data.
• The overheads of using relational data model come

with the cost of using powerful hardware and devices.
•

Object-Oriented Model

• In Object-oriented Model data stored in the form
of objects. The structure which is called classes
which display data within it. It defines a database
as a collection of objects which stores both data
members values and operations.

• Advantages
• Complex data sets can be saved and retrieved quickly and

easily.

• Object databases are not widely adopted.Object IDs are
assigned automatically.

• Works well with object-oriented programming languages.

• Disadvantages

• Object databases are not widely adopted.

• In some situations, the high complexity can cause
performance problems.

Advantages of DBMS

• DBMS offers a variety of techniques to store & retrieve data
• DBMS serves as an efficient handler to balance the needs of

multiple applications using the same data
• Uniform administration procedures for data
• Application programmers never exposed to details of data

representation and storage.
• A DBMS uses various powerful functions to store and retrieve data

efficiently.
• Offers Data Integrity and Security
• The DBMS implies integrity constraints to get a high level of

protection against prohibited access to data.
• A DBMS schedules concurrent access to the data in such a manner

that only one user can access the same data at a time
• Reduced Application Development Time

Disadvantage of DBMS

• DBMS may offer plenty of advantages but, it has certain
flaws-

• Cost of Hardware and Software of a DBMS is quite high
which increases the budget of your organization.

• Most database management systems are often complex
systems, so the training for users to use the DBMS is
required.

• In some organizations, all data is integrated into a single
database which can be damaged because of electric failure
or database is corrupted on the storage media

• Use of the same program at a time by many users
sometimes lead to the loss of some data.

• DBMS can't perform sophisticated calculations

Data abstraction:

There are mainly 3 levels of data abstraction:

Physical: This is the lowest level of data abstraction.

It tells us how the data is actually stored in memory.

The access methods like sequential or random access

and file organization methods like B+ trees, hashing

used for the same. Usability, size of memory, and the

number of times the records are factors which we

need to know while designing the database.

Suppose we need to store the details of an employee.

Blocks of storage and the amount of memory used for

these purposes is kept hidden from the user.

Logical: This level comprises of the information that is actually

stored in the database in the form of tables. It also stores the

relationship among the data entities in relatively simple

structures. At this level, the information available to the user at

the view level is unknown.

We can store the various attributes of an employee and

relationships, e.g. with the manager can also be stored.

View: This is the highest level of abstraction. Only a part of the

actual database is viewed by the users. This level exists to ease

the accessibility of the database by an individual user.

Users view data in the form of rows and columns. Tables and

relations are used to store data. Multiple views of the same

database may exist. Users can just view the data and interact

with the database, storage and implementation details are

hidden from them.

The main purpose of data abstraction is achieving data independence

in order to save time and cost required when the database is modified

or altered.

We have namely two levels of data independence arising from these

levels of abstraction :

Physical level data independence : It refers to the characteristic of

being able to modify the physical schema without any alterations to the

conceptual or logical schema, done for optimization purposes, e.g.,

Conceptual structure of the database would not be affected by any

change in storage size of the database system server. Changing from

sequential to random access files is one such example.

These alterations or modifications to the physical structure may

include:

•Utilizing new storage devices.

•Modifying data structures used for storage.

•Altering indexes or using alternative file organization techniques etc.

Data Independence

• Logical level data independence: It refers

characteristic of being able to modify the logical

schema without affecting the external schema or

application program. The user view of the data

would not be affected by any changes to the

conceptual view of the data. These changes may

include insertion or deletion of attributes, altering

table structures entities or relationships to the

logical schema etc.

Different types of Database Users

• These are seven types of data base users in DBMS.
• Database Administrator (DBA) :

Database Administrator (DBA) is a person/team who defines the
schema and also controls the 3 levels of database.
The DBA will then create a new account id and password for the
user if he/she need to access the data base.
DBA is also responsible for providing security to the data base and
he allows only the authorized users to access/modify the data base.
– DBA also monitors the recovery and back up and provide technical

support.
– The DBA has a DBA account in the DBMS which called a system or

superuser account.
– DBA repairs damage caused due to hardware and/or software failures.

•

• Naïve(inexperience) / Parametric End Users :
Parametric End Users are the unsophisticated
who don’t have any DBMS knowledge but they
frequently use the data base applications in their
daily life to get the desired results.For examples,
Railway’s ticket booking users are naive users.
Clerks in any bank is a naive user because they
don’t have any DBMS knowledge but they still
use the database and perform their given task.

•

• System Analyst :
System Analyst is a user who analyzes the requirements of
parametric end users. They check whether all the
requirements of end users are satisfied.

• Sophisticated Users :
Sophisticated users can be engineers, scientists, business
analyst, who are familiar with the database. They can
develop their own data base applications according to their
requirement. They don’t write the program code but they
interact the data base by writing SQL queries directly
through the query processor.

• Data Base Designers :
Data Base Designers are the users who design the structure of data
base which includes tables, indexes, views, constraints, triggers,
stored procedures. He/she controls what data must be stored and
how the data items to be related.

• Application Programmer :
Application Programmer are the back end programmers who writes
the code for the application programs.They are the computer
professionals. These programs could be written in Programming
languages such as Visual Basic, Developer, C, FORTRAN, COBOL etc.

• Casual Users / Temporary Users :
Casual Users are the users who occasionally use/access the data
base but each time when they access the data base they require
the new information, for example, Middle or higher level manager.

Structure--Data Base Management

• 1. Query Processor :
It interprets the requests (queries) received
from end user via an application program into
instructions. It also executes the user request
which is received from the DML compiler.
Query Processor contains the following
components –

• DML Compiler –
It processes the DML statements into low level
instruction (machine language), so that they
can be executed.

• DDL Interpreter –
It processes the DDL statements into a set of
table containing meta data (data about data).

• Embedded DML Pre-compiler –
It processes DML statements embedded in an
application program into procedural calls.

• Query Optimizer –
It executes the instruction generated by DML
Compiler.

• 2. Storage Manager :
Storage Manager is a program that provides an interface between the data stored
in the database and the queries received. It is also known as Database Control
System. It maintains the consistency and integrity of the database by applying the
constraints and executes the DCL statements. It is responsible for updating,
storing, deleting, and retrieving data in the database.
It contains the following components –

• Authorization Manager –
It ensures role-based access control, i.e,. checks whether the particular person is
privileged to perform the requested operation or not.

• Integrity Manager –
It checks the integrity constraints when the database is modified.

•

https://www.geeksforgeeks.org/sql-ddl-dql-dml-dcl-tcl-commands/

• Transaction Manager –
It controls concurrent access by performing the operations
in a scheduled way that it receives the transaction. Thus, it
ensures that the database remains in the consistent state
before and after the execution of a transaction.

• File Manager –
It manages the file space and the data structure used to
represent information in the database.

• Buffer Manager –
It is responsible for cache memory and the transfer of data
between the secondary storage and main memory.

• 3. Disk Storage :
It contains the following components –

• Data Files –
It stores the data.

• Data Dictionary –
It contains the information about the structure of
any database object. It is the repository of
information that governs the metadata.

Database

ER model

• ER model stands for an Entity-Relationship model. It is a high-level
data model. This model is used to define the data elements and
relationship for a specified system.

• It develops a conceptual design for the database. It also develops a
very simple and easy to design view of data.

• In ER modeling, the database structure is portrayed as a diagram
called an entity-relationship diagram.

• For example, Suppose we design a school database. In this
database, the student will be an entity with attributes like address,
name, id, age, etc. The address can be another entity with
attributes like city, street name, pin code, etc and there will be a
relationship between them.

•

•

•
Components of ER Model

• 1. Entity:

• An entity may be any object, class, person or
place. In the ER diagram, an entity can be
represented as rectangles.

• Consider an organization as an example-
manager, product, employee, department etc.
can be taken as an entity.

•

a. Weak Entity

• An entity that depends on another entity called a
weak entity. The weak entity doesn't contain any
key attribute of its own. The weak entity is
represented by a double rectangle.

•

•
2. Attribute

• The attribute is used to describe the property of an entity.
Eclipse is used to represent an attribute.

• For example, id, age, contact number, name, etc. can be
attributes of a student.

• a. Key Attribute
• The key attribute is used to represent the main

characteristics of an entity. It represents a primary key.
The key attribute is represented by an ellipse with the
text underlined.

•

• b. Composite Attribute
• An attribute that composed of many other attributes is known as a

composite attribute. The composite attribute is represented by an
ellipse, and those ellipses are connected with an ellipse.

•

• c. Multivalued Attribute
• An attribute can have more than one value. These

attributes are known as a multivalued attribute. The
double oval is used to represent multivalued attribute.

• For example, a student can have more than one phone
number.

• d. Derived Attribute
• An attribute that can be derived from other attribute is

known as a derived attribute. It can be represented by a
dashed ellipse.

• For example, A person's age changes over time and can be
derived from another attribute like Date of birth.

•

• 3. Relationship

• A relationship is used to describe the relation
between entities. Diamond or rhombus is
used to represent the relationship.

•

• Types of relationship are as follows:
• a. One-to-One Relationship
• When only one instance of an entity is associated with the relationship, then it is

known as one to one relationship.
• For example, A female can marry to one male, and a male can marry to one

female.
•

• b. One-to-many relationship
• When only one instance of the entity on the left, and more

than one instance of an entity on the right associates with
the relationship then this is known as a one-to-many
relationship.

• For example, Scientist can invent many inventions, but the
invention is done by the only specific scientist.

Women (one) marrying (many)men---Polyandry

Many women marrying one man---Polygyny

• c. Many-to-one relationship
• When more than one instance of the entity on the left, and only

one instance of an entity on the right associates with the
relationship then it is known as a many-to-one relationship.

• For example, Student enrolls for only one course, but a course can
have many students.

•

• d. Many-to-many relationship
• When more than one instance of the entity on the left, and more than one

instance of an entity on the right associates with the relationship then it is
known as a many-to-many relationship.

• For example, Employee can assign by many projects and project can have
many employees.

Notation of ER diagram

• Database can be represented using the
notations. In ER diagram, many notations are
used to express the cardinality. These
notations are as follows:

•

Fig: Notations of ER diagram

Mapping Constraints

• A mapping constraint is a data constraint that expresses the number of
entities to which another entity can be related via a relationship set.

• It is most useful in describing the relationship sets that involve more than
two entity sets.

• For binary relationship set R on an entity set A and B, there are four
possible mapping cardinalities. These are as follows:
– One to one (1:1)
– One to many (1:M)
– Many to one (M:1)
– Many to many (M:M)

• One-to-one
• In one-to-one mapping, an entity in E1 is associated with at most one

entity in E2, and an entity in E2 is associated with at most one entity in E1.

• One-to-many

• In one-to-many mapping, an entity in E1 is
associated with any number of entities in E2,
and an entity in E2 is associated with at most
one entity in E1.

• Many-to-one

• In one-to-many mapping, an entity in E1 is
associated with at most one entity in E2, and
an entity in E2 is associated with any number
of entities in E1.

• Many-to-many

• In many-to-many mapping, an entity in E1 is
associated with any number of entities in E2,
and an entity in E2 is associated with any
number of entities in E1.

• Keys

• Keys play an important role in the relational database.

• It is used to uniquely identify any record or row of data
from the table. It is also used to establish and identify
relationships between tables.

• For example: In Student table, ID is used as a key
because it is unique for each student. In PERSON table,
passport_number, license_number, SSN are keys since
they are unique for each person.

•

Keys

Types of key:

1. Primary key

• It is the first key which is used to identify one and only one
instance of an entity uniquely. An entity can contain
multiple keys as we saw in PERSON table. The key which is
most suitable from those lists become a primary key.

• In the EMPLOYEE table, ID can be primary key since it is
unique for each employee. In the EMPLOYEE table, we can
even select License_Number and Passport_Number as
primary key since they are also unique.

• For each entity, selection of the primary key is based on
requirement and developers.

•

• A candidate key is an attribute or set of an
attribute which can uniquely identify a tuple.

• The remaining attributes except for primary key
are considered as a candidate key. The candidate
keys are as strong as the primary key.

• For example: In the EMPLOYEE table, id is best
suited for the primary key. Rest of the attributes
like SSN, Passport_Number, and License_Number,
etc. are considered as a candidate key.

2. Candidate key

3. Super Key

• Super key is a set of an attribute which can
uniquely identify a tuple. Super key is a superset
of a candidate key.

• For example: In the above EMPLOYEE table,
for(EMPLOEE_ID, EMPLOYEE_NAME) the name of
two employees can be the same, but their
EMPLYEE_ID can't be the same. Hence, this
combination can also be a key.

• The super key would be EMPLOYEE-ID,
(EMPLOYEE_ID, EMPLOYEE-NAME), etc.

4. Foreign key

• Foreign keys are the column of the table which is used to
point to the primary key of another table.

• In a company, every employee works in a specific
department, and employee and department are two
different entities. So we can't store the information of the
department in the employee table. That's why we link
these two tables through the primary key of one table.

• We add the primary key of the DEPARTMENT table,
Department_Id as a new attribute in the EMPLOYEE table.

• Now in the EMPLOYEE table, Department_Id is the foreign
key, and both the tables are related.

Foreign key

• Relationship Type and Relationship Set:
A relationship type represents the association
between entity types. For example,‘Enrolled
in’ is a relationship type that exists between
entity type Student and Course. In ER diagram,
relationship type is represented by a diamond
and connecting the entities with lines.

• A set of relationships of same type is known as
relationship set. The following relationship set
depicts S1 is enrolled in C2, S2 is enrolled in
C1 and S3 is enrolled in C3.

• Degree of a relationship set:
The number of different entity
sets participating in a relationship set is called
as degree of a relationship set.

• Unary Relationship –
When there is only ONE entity set
participating in a relation, the relationship is
called as unary relationship. For example, one
person is married to only one person.

Binary’,Relationship
When there are TWO entities set participating in a relation, the
relationship is called as binary relationship.For example, Student
is enrolled in Course.

n-ary Relationship –
When there are n entities set participating in a
relation, the relationship is called as n-ary
relationship.

• Cardinality:
The number of times an entity of an entity set
participates in a relationship set is known as
cardinality. Cardinality can be of different types:

• One to one – When each entity in each entity set
can take part only once in the relationship, the
cardinality is one to one. Let us assume that a
male can marry to one female and a female can
marry to one male. So the relationship will be
one to one.

Using Sets, it can be represented as:

• Many to one – When entities in one entity set can take
part only once in the relationship set and entities in
other entity set can take part more than once in the
relationship set, cardinality is many to one. Let us
assume that a student can take only one course but
one course can be taken by many students. So the
cardinality will be n to 1. It means that for one course
there can be n students but for one student, there will
be only one course.

•

Using Sets, it can be represented as:

• Many to many – When entities in all entity
sets can take part more than once in the
relationship cardinality is many to many. Let
us assume that a student can take more than
one course and one course can be taken by
many students. So the relationship will be
many to many.

Using Sets, it can be represented as:

• Participation.Constraint:
Participation Constraint is applied on the entity participating
in the relationship set.

• Total Participation – Each entity in the entity set must
participate in the relationship. If each student must enroll in a
course, the participation of student will be total. Total
participation is shown by double line in ER diagram.

• Partial Participation – The entity in the entity set may or may
NOT participate in the relationship. If some courses are not
enrolled by any of the student, the participation of course will
be partial.The diagram depicts the ‘Enrolled in’ relationship
set with Student Entity set having total participation and
Course Entity set having partial participation.

•

• Binary Relationship –
When there are TWO entities set
participating in a relation, the relationship is
called as binary relationship.For example,
Student is enrolled in Course.

• Generalization
• Generalization is like a bottom-up approach in which two or

more entities of lower level combine to form a higher level
entity if they have some attributes in common.

• In generalization, an entity of a higher level can also
combine with the entities of the lower level to form a
further higher level entity.

•

• Generalization is more like subclass and
superclass system, but the only difference is the
approach. Generalization uses the bottom-up
approach.

• In generalization, entities are combined to form a
more generalized entity, i.e., subclasses are
combined to make a superclass.

• For example, Faculty and Student entities can be
generalized and create a higher level entity
Person.

• Specialization
• Specialization is a top-down approach, and it is opposite to

Generalization. In specialization, one higher level entity can
be broken down into two lower level entities.

• Specialization is used to identify the subset of an entity set
that shares some distinguishing characteristics.

• Normally, the superclass is defined first, the subclass and its
related attributes are defined next, and relationship set are
then added.

• For example: In an Employee management system,
EMPLOYEE entity can be specialized as TESTER or
DEVELOPER based on what role they play in the company.

• Aggregation

• In aggregation, the relation between two entities
is treated as a single entity. In aggregation,
relationship with its corresponding entities is
aggregated into a higher level entity.

• Reduction of ER diagram to Table

• The database can be represented using the
notations, and these notations can be reduced
to a collection of tables.

• In the database, every entity set or
relationship set can be represented in tabular
form.

• The ER diagram is given below:

• Conceptual database design steps are:
• Build a conceptual data model
• Recognize entity types
• Recognize the relationship types
• Identify and connect attributes with entity or relationship

types
• Determine attribute domains
• Determine candidate, primary, and alternate key attributes
• Consider the use of improved modeling concepts (optional

step)
• Check model for redundancy
• Validate the conceptual model against user transactions
• Review the conceptual data model with user
•

• Building a Conceptual Data Model

• The first step in conceptual database design is to build
one (or more) conceptual data replica of the data
requirements of the enterprise. A conceptual data
model comprises these following elements:

• entity types

• types of relationship

• attributes and the various attribute domains

• primary keys and alternate keys

• integrity constraints

• The conceptual data model is maintained by
documentation, including ER diagrams and a data
dictionary, which is produced throughout the
development of the model.

• There are some points for converting the ER diagram to
the table:

• Entity type becomes a table.
• In the given ER diagram, LECTURE, STUDENT, SUBJECT

and COURSE forms individual tables.
• All single-valued attribute becomes a column for the

table.
• In the STUDENT entity, STUDENT_NAME and

STUDENT_ID form the column of STUDENT table.
Similarly, COURSE_NAME and COURSE_ID form the
column of COURSE table and so on.

• A key attribute of the entity type represented by the
primary key.

• In the given ER diagram, COURSE_ID, STUDENT_ID,
SUBJECT_ID, and LECTURE_ID are the key attribute of
the entity.

• The multivalued attribute is represented by a separate table.
• In the student table, a hobby is a multivalued attribute. So it is not

possible to represent multiple values in a single column of STUDENT
table. Hence we create a table STUD_HOBBY with column name
STUDENT_ID and HOBBY. Using both the column, we create a
composite key.

• Composite attribute represented by components.
• In the given ER diagram, student address is a composite attribute. It

contains CITY, PIN, DOOR#, STREET, and STATE. In the STUDENT
table, these attributes can merge as an individual column.

• Derived attributes are not considered in the table.
• In the STUDENT table, Age is the derived attribute. It can be

calculated at any point of time by calculating the difference
between current date and Date of Birth.

• Using these rules, you can convert the ER
diagram to tables and columns and assign the
mapping between the tables. Table structure
for the given ER diagram is as below:

•

Integrity Constraints

Integrity constraints are a set of rules. It is used to
maintain the quality of information.

Integrity constraints ensure that the data insertion,
updating, and other processes have to be performed in
such a way that data integrity is not affected.

Thus, integrity constraint is used to guard against
accidental damage to the database.

UNIT-2

Types of Integrity Constraint

1. Domain constraints

Domain constraints can be defined as the definition of a valid set of
values for an attribute.

The data type of domain includes string, character, integer, time, date,
currency, etc. The value of the attribute must be available in the
corresponding domain.
EXAMPLE

2. Entity integrity constraints

The entity integrity constraint states that primary key value can't be
null.
This is because the primary key value is used to identify individual
rows in relation and if the primary key has a null value, then we
can't identify those rows.
A table can contain a null value other than the primary key field.
Example:

3. Referential Integrity Constraints

A referential integrity constraint is specified between two tables.
In the Referential integrity constraints, if a foreign key in Table 1
refers to the Primary Key of Table 2, then every value of the Foreign
Key in Table 1 must be null or be available in Table 2. Example:

4. Key constraints

Keys are the entity set that is used to identify an entity within its
entity set uniquely.
An entity set can have multiple keys, but out of which one key will
be the primary key. A primary key can contain a unique value in the
relational table.
Example:

SQL Statements
Show databases;
Create database db_name;
Use db_name;
Select database();

Creating Table
CREATE TABLE table_name (

column1 datatype,
column2 datatype,
column3 datatype,

);

CREATE TABLE Persons (
PersonID int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)

);

Select * from table_nm
Insert into tn_name values(v1,v2,v3,v4,v5)

SELECT column1, column2, ...
FROM table_name
WHERE condition;

SELECT * FROM Customers
WHERE Country='Mexico';

SQL Create Constraints

Syntax
CREATE TABLE table_name (

column1 datatype constraint,
column2 datatype constraint,
column3 datatype constraint,
....

);

SQL Constraints

SQL constraints are used to specify rules for the data in a table.
Constraints are used to limit the type of data that can go into a table.
This ensures the accuracy and reliability of the data in the table. If there
is any violation between the constraint and the data action, the action is
aborted.

Constraints can be column level or table level. Column level
constraints apply to a column, and table level constraints apply
to the whole table.

The following constraints are commonly used in SQL:

•NOT NULL - Ensures that a column cannot have a NULL value

•UNIQUE - Ensures that all values in a column are different

•PRIMARY KEY - A combination of a NOT NULL and UNIQUE.

Uniquely identifies each row in a table

•FOREIGN KEY - Prevents actions that would destroy links

between tables

•CHECK - Ensures that the values in a column satisfies a specific

condition
•DEFAULT - Sets a default value for a column if no value is

specified
•CREATE INDEX - Used to create and retrieve data from the

database very quickly

https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_check.asp
https://www.w3schools.com/sql/sql_default.asp
https://www.w3schools.com/sql/sql_create_index.asp

CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255) NOT NULL,
Age int

);

CREATE TABLE Persons (
ID int NOT NULL UNIQUE,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int

);

CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
PRIMARY KEY (ID)

)

CREATE TABLE Orders (
OrderID int NOT NULL,
OrderNumber int NOT NULL,
PersonID int,
PRIMARY KEY (OrderID),
FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)

);

CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
CHECK (Age>=18)

);

create table pp (mks int,rno int,foreign key(rno) references mm(rno));

CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
City varchar(255) DEFAULT 'Sandnes'

);

CREATE INDEX idx_lastname
ON Persons (LastName);

Select * from where condn and
Select f1,f2,f3 from where condn and

Update table nm

Delete from tn;
Drop table tn;
Truncate table tn;

SELECT * from tutorials_tbl -> WHERE tutorial_author LIKE '%jay';

select * from mm where sname like 'a%';
select * from mm where sname like 'a*';

SELECT * from tutorials_tbl ORDER BY tutorial_author ASC

UPDATE tutorials_tbl -> SET tutorial_title = 'Learning JAVA' -> WHERE tutorial_id = 3;

ALTER TABLE testalter_tbl DROP i;

ALTER TABLE testalter_tbl ADD i INT;

ALTER TABLE testalter_tbl RENAME TO alter_tbl;

SELECT * FROM tcount_tbl WHERE tutorial_count = NULL;

SQL Commands

SQL commands are instructions. It is used to communicate
with the database. It is also used to perform specific tasks,
functions, and queries of data.

SQL can perform various tasks like create a table, add data
to tables, drop the table, modify the table, set permission
for users.

Types of SQL Commands

There are five types of SQL commands: DDL, DML, DCL, TCL, and
DQL.

1. Data Definition Language (DDL)

DDL changes the structure of the table like creating a table, deleting a
table, altering a table, etc.

All the command of DDL are auto-committed that means it
permanently save all the changes in the database.

Here are some commands that come under DDL:

CREATE
ALTER
DROP
TRUNCATE

• Create table tname(c1 dt1,c2,dt2,c3 dt3);

• ALTER TABLE Customers
ADD Email varchar(255);

• ALTER TABLE table_name
DROP COLUMN column_name;

• ALTER TABLE table_name
ALTER COLUMN column_name datatype;

• ALTER TABLE Persons
ADD DateOfBirth date;

• DROP TABLE table_name;

• TRUNCATE TABLE table_name;

2. Data Manipulation Language

DML commands are used to modify the database. It is responsible
for all form of changes in the database.

The command of DML is not auto-committed that means it can't
permanently save all the changes in the database. They can be
rollback.

Here are some commands that come under DML:
INSERT
UPDATE
DELETE

• UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

• UPDATE Customers
SET ContactName = 'Alfred Schmidt',
City= 'Frankfurt'
WHERE CustomerID = 1;

• UPDATE Customers
SET ContactName='Juan';

• Change the sal of employees in emp table by
12%(plus) where desig=‘class-2’

• DELETE FROM table_name WHERE condition;

• DELETE FROM Customers WHERE CustomerNa
me='Alfreds Futterkiste';

• DELETE FROM table_name;

3. Data Control Language

DCL commands are used to grant and take back authority from any
database user.

Here are some commands that come under DCL:

Grant
Revoke

• GRANT SELECT ON employees TO
bob@localhost;

• GRANT INSERT, UPDATE, DELETE ON
employees TO bob@localhost;

• GRANT DELETE ON classicmodels.employees
TO bob@localhsot;

• GRANT INSERT ON classicmodels.* TO
bob@localhost;

• REVOKE INSERT, UPDATE ON classicmodels.*
FROM rfc@localhost;

• REVOKE INSERT ON *.* FROM
'jeffrey'@'localhost';

• REVOKE 'role1', 'role2' FROM
'user1'@'localhost', 'user2'@'localhost';

• REVOKE SELECT ON world.* FROM 'role3';

4. Transaction Control Language

TCL commands can only use with DML commands like INSERT,
DELETE and UPDATE only.

These operations are automatically committed in the database
that's why they cannot be used while creating tables or dropping
them.

Here are some commands that come under TCL:

COMMIT
ROLLBACK
SAVEPOINT

5. Data Query Language

DQL is used to fetch the data from the database.
It uses only one command:

SELECT

a. SELECT: This is the same as the projection operation of
relational algebra. It is used to select the attribute based on the
condition described by WHERE clause.

Views in SQL
Views in SQL are considered as a virtual table. A view also contains rows
and columns.

To create the view, we can select the fields from one or more tables
present in the database.

A view can either have specific rows based on certain condition or all
the rows of a table.

CREATE VIEW DetailsView AS
SELECT NAME, ADDRESS
FROM Student_Details
WHERE STU_ID < 4;

SELECT * FROM DETAILSVIEW

CREATE OR REPLACE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName, City
FROM Customers
WHERE Country = 'Brazil';

ALTER salesOrders AS SELECT orderNumber,
customerNumber, productCode, quantityOrdered,
priceEach, status FROM orders

DROP VIEW view_name;

LOGICAL DATABASE DESIGN

Logical database design is the process of deciding how to arrange
the attributes of the entities in a given business environment into
database structures, such as the tables of a relational database.
The goal of logical database design is to create well structured
tables that properly reflect the company's business environment.
The tables will be able to store data about the company's entities
in a non-redundant manner and foreign keys will be placed in the
tables so that all the relationships among the entities will be
supported. Physical database design, which will be treated in the
next chapter, is the process of modifying the logical database
design to improve performance.

Relational Algebra

Relational algebra is a procedural query language, which takes
instances of relations as input and yields instances of relations as
output. It uses operators to perform queries. An operator can be
either unary or binary. They accept relations as their input and yield
relations as their output. Relational algebra is performed recursively
on a relation and intermediate results are also considered relations.
The fundamental operations of relational algebra are as follows −

Select
Project
Union
Set different
Cartesian product
Rename

Types of Relational operation

Select Operation (σ)

It selects tuples that satisfy the given predicate
from a relation.

Notation − σp(r)

Where σ stands for selection predicate
and r stands for relation. p is prepositional logic
formula which may use connectors like and,
or, and not. These terms may use relational
operators like − =, ≠, ≥, < , >, ≤.

For example −
σsubject = "database"(Books)

Output − Selects tuples from books where subject is
'database'.

σsubject = "database" and price = "450"(Books)

Output − Selects tuples from books where subject is
'database' and 'price' is 450.

σsubject = "database" and price = "450" or year > "2010"(Books)

Output − Selects tuples from books where subject is
'database' and 'price' is 450 or those books published
after 2010.

Project Operation (∏)

It projects column(s) that satisfy a given predicate.

Notation − ∏A1, A2, An (r)

Where A1, A2 , An are attribute names of relation r.
Duplicate rows are automatically eliminated, as relation is
a set.

For example −

∏subject, author (Books) Selects and projects columns named
as subject and author from the relation Books.

Union Operation (∪)

It performs binary union between two given relations and is
defined as −

r ∪ s = { t | t ∈ r or t ∈ s} Notation − r U s

Where r and s are either database relations or relation result set
(temporary relation).
For a union operation to be valid, the following conditions must
hold −
r, and s must have the same number of attributes.
Attribute domains must be compatible.

Duplicate tuples are automatically eliminated

∏ author (Books) ∪ ∏ author (Articles)

Output − Projects the names of the authors who have either written a
book or an article or both.

Set Difference (−)

The result of set difference operation is tuples, which are present in one
relation but are not in the second relation.

Notation − r − s

Finds all the tuples that are present in r but not in s.
∏ author (Books) − ∏ author (Articles) Output − Provides the name of
authors who have written books but not articles.

Cartesian Product (Χ)

Combines information of two different relations into one.
Notation − r Χ s

Where r and s are relations and their output will be defined as −
r Χ s = { q t | q ∈ r and t ∈ s}

σauthor = 'tutorialspoint'(Books Χ Articles)

− Yields a relation, which shows all the books and articles
written by tutorialspoint.

Rename Operation (ρ)

The results of relational algebra are also relations but without any
name. The rename operation allows us to rename the output relation.
'rename' operation is denoted with small Greek letter rho ρ.

Notation − ρ x (E)]

ρ(STUDENT1, STUDENT)

Relational Calculus
Relational calculus is a non-procedural query language. In the
non-procedural query language, the user is concerned with the
details of how to obtain the end results.

The relational calculus tells what to do but never explains how to
do.

1. Tuple Relational Calculus (TRC)

The tuple relational calculus is specified to select the tuples in a
relation. In TRC, filtering variable uses the tuples of a relation.

The result of the relation can have one or more tuples.

Notation:
{T | P (T)} or {T | Condition (T)}

Duplicate tuples
.

Cust(cname,street,city)

Branch(br-name,br-city)

Account(ano,br-name,bal)
Loan(lno,br-nm,amt)
Borrow(c-name,lno)

Depo(c-name,accno)

`display the details of the customer having
an account

Display the details of the customer having an
account and balance >=20000

Queries-1: Find the loan number, branch, amount of loans of greater
than or equal to 10000 amount.

{t| t ∈ loan ∧ t[amount]>=10000}

Queries-2: Find the loan number for each loan of an amount greater or
equal to 10000.

{t| ∃ s ∈ loan(t[loan number] = s[loan number] ∧ s[amount]>=10000)}

Queries-3: Find the names of all customers who have a loan and an
account at the bank.

{t | ∃ s ∈ borrower(t[customer-name] = s[customer-name]) ∧ ∃ u ∈
depositor(t[customer-name] = u[customer-name])}

Queries-4: Find the names of all customers having a loan
at the “ABC” branch.

{t | ∃ s ∈ borrower(t[customer-name] = s[customer-name] ∧ ∃ u ∈

loan(u[branch-name] = “ABC” ∧ u[loan-number] = s[loan-
number]))}

Domain Relational Calculus
Find loan-no,br-name,amt for loan above 15000
{<l,b,a>|<l,b,a> E loan ^ a >15000}

Find loan-no for loan >20000
{<l>|<l,b,a> E loan ^ a>20000}

Find the name of all the customers who have a loan from hyd
br and find the loan amt

{<n,a> | L (<n,l>E borrower ^ b(<l,b,a>E loan ^
b=‘hyd’’))}

Domain Relational Calculus (DRC)

In domain relational calculus, filtering is done based on the domain of
the attributes and not based on the tuple values.

Syntax: { c1, c2, c3, ..., cn | F(c1, c2, c3, ... ,cn)}

where, c1, c2... etc represents domain of attributes(columns)
and F defines the formula including the condition for fetching the data.

For example,

{< name, age > | ∈ Student ∧ age > 17}

Again, the above query will return the names and ages of the students
in the table Student who are older than 17.

UNIT-3
The SQL UNION Operator

The UNION operator is used to combine the result-set of two or
more SELECT statements.

Every SELECT statement within UNION must have the same number
of columns

The columns must also have similar data types
The columns in every SELECT statement must also be in the same
order

UNION Syntax
SELECT column_name(s) FROM table1
UNION
SELECT column_name(s) FROM table2;

• UNION ALL Syntax

• The UNION operator selects only distinct
values by default. To allow duplicate values,
use UNION ALL:

• SELECT column_name(s) FROM table1
UNION ALL
SELECT column_name(s) FROM table2;

• The SQL SELECT DISTINCT Statement

• The SELECT DISTINCT statement is used to return only
distinct (different) values.

• Inside a table, a column often contains many duplicate
values; and sometimes you only want to list the different
(distinct) values.

• SELECT DISTINCT Syntax

• SELECT DISTINCT column1, column2, ...
FROM table_name;

•

• The SQL ORDER BY Keyword

• The ORDER BY keyword is used to sort the result-
set in ascending or descending order.

• The ORDER BY keyword sorts the records in
ascending order by default. To sort the records in
descending order, use the DESC keyword.

• ORDER BY Syntax

• SELECT column1, column2, ...
FROM table_name
ORDER BY column1, column2, ... ASC|DESC;

• IS NULL Syntax

• SELECT column_names
FROM table_name
WHERE column_name IS NULL;

• IS NOT NULL Syntax

• SELECT column_names
FROM table_name
WHERE column_name IS NOT NULL;

• The SQL UPDATE Statement

• The UPDATE statement is used to modify the
existing records in a table.

• UPDATE Syntax

• UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

• SELECT TOP 3 * FROM Customers;

• The SQL MIN() and MAX() Functions

• The MIN() function returns the smallest value of
the selected column.

• The MAX() function returns the largest value of
the selected column.

• MIN() Syntax
• SELECT MIN(column_name)

FROM table_name
WHERE condition;

• MAX() Syntax

• SELECT MAX(column_name)
FROM table_name
WHERE condition;

• SELECT MIN(Price) AS SmallestPrice
FROM Products;

• SELECT MAX(Price) AS LargestPrice
FROM Products;

• The SQL COUNT(), AVG() and SUM() Functions

• The COUNT() function returns the number of rows that matches a
specified criterion.

• COUNT() Syntax
• SELECT COUNT(column_name)

FROM table_name
WHERE condition;

• The AVG() function returns the average value of a numeric column.
• AVG() Syntax

• SELECT AVG(column_name)
FROM table_name
WHERE condition;

• The SUM() function returns the total sum of a
numeric column.

• SUM() Syntax

• SELECT SUM(column_name)
FROM table_name
WHERE condition;

• The SQL LIKE Operator

• The LIKE operator is used in a WHERE clause to
search for a specified pattern in a column.

• There are two wildcards often used in
conjunction with the LIKE operator:

• The percent sign (%) represents zero, one, or
multiple characters

• The underscore sign (_) represents one, single
character

• SQL Aliases

• SQL aliases are used to give a table, or a column
in a table, a temporary name.

• Aliases are often used to make column names
more readable.

• An alias only exists for the duration of that query.

• An alias is created with the AS keyword.

• Alias Column Syntax

• SELECT column_name AS alias_name
FROM table_name;

• The SQL IN Operator

• The IN operator allows you to specify multiple
values in a WHERE clause.

• The IN operator is a shorthand for
multiple OR conditions.

• IN Syntax

• SELECT column_name(s)
FROM table_name
WHERE column_name IN (value1, value2, ...);

• SELECT * FROM Customers
WHERE Country IN ('Germany', 'France', 'UK');

• SELECT * FROM Customers
WHERE Country NOT IN ('Germany', 'France', 'UK');

• SELECT * FROM Customers
WHERE Country IN (SELECT Country FROM Supplie
rs);

•

• The SQL BETWEEN Operator

• The BETWEEN operator selects values within a given
range. The values can be numbers, text, or dates.

• The BETWEEN operator is inclusive: begin and end
values are included.

• BETWEEN Syntax

• SELECT column_name(s)
FROM table_name
WHERE column_name BETWEEN value1 AND value2;

• SELECT * FROM Products
WHERE Price BETWEEN 10 AND 20;

•

• SQL JOIN

• A JOIN clause is used to combine rows from
two or more tables, based on a related
column between them.

• Different Types of SQL JOINs

• Here are the different types of the JOINs in SQL:

• (INNER) JOIN: Returns records that have matching
values in both tables

• LEFT (OUTER) JOIN: Returns all records from the
left table, and the matched records from the right
table

• RIGHT (OUTER) JOIN: Returns all records from the
right table, and the matched records from the left
table

FULL (OUTER) JOIN: Returns all records when there
is a match in either left or right table

• SQL INNER JOIN Keyword

• The INNER JOIN keyword selects records that
have matching values in both tables.

• INNER JOIN Syntax

• SELECT column_name(s)
FROM table1
INNER JOIN table2
ON table1.column_name = table2.column_na
me;

• SELECT Orders.OrderID,
Customers.CustomerName
FROM Orders
INNER JOIN Customers ON Orders.CustomerID
= Customers.CustomerID;

• SQL LEFT JOIN Keyword

• The LEFT JOIN keyword returns all records from
the left table (table1), and the matching records
from the right table (table2).

• The result is 0 records from the right side, if there
is no match.

• LEFT JOIN Syntax

• SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name = table2.column_name;

• SELECT Customers.CustomerName,
Orders.OrderID
FROM Customers
LEFT JOIN Orders ON Customers.CustomerID =
Orders.CustomerID
ORDER BY Customers.CustomerName;

• SQL RIGHT JOIN Keyword

• The RIGHT JOIN keyword returns all records from
the right table (table2), and the matching records
from the left table (table1). The result is 0 records
from the left side, if there is no match.

• RIGHT JOIN Syntax

• SELECT column_name(s)
FROM table1
RIGHT JOIN table2
ON table1.column_name = table2.column_name;

• SELECT Orders.OrderID, Employees.LastName,
Employees.FirstName
FROM Orders
RIGHT JOIN Employees ON Orders.EmployeeID
= Employees.EmployeeID
ORDER BY Orders.OrderID;

• SQL FULL OUTER JOIN Keyword

• The FULL OUTER JOIN keyword returns all records
when there is a match in left (table1) or right
(table2) table records.

• Tip: FULL OUTER JOIN and FULL JOIN are the
same.

• FULL OUTER JOIN Syntax

• SELECT column_name(s)
FROM table1
FULL OUTER JOIN table2
ON table1.column_name = table2.column_name
WHERE condition;

• SELECT Customers.CustomerName,
Orders.OrderID
FROM Customers
FULL OUTER JOIN Orders ON Customers.Custo
merID=Orders.CustomerID
ORDER BY Customers.CustomerName;

• SQL Self Join

• A self join is a regular join, but the table is
joined with itself.

• Self Join Syntax

• SELECT column_name(s)
FROM table1 T1, table1 T2
WHERE condition;

• SELECT A.CustomerName AS CustomerName1,
B.CustomerName AS CustomerName2, A.City
FROM Customers A, Customers B
WHERE A.CustomerID <> B.CustomerID
AND A.City = B.City
ORDER BY A.City;

• create table s22 (eno int,ename VARCHAR(20),mngrno int);

• SELECT A.ENAME AS 'EMPLOYEE',B.ENAME AS 'WORKS FOR'
FROM S22 A,S22 B WHERE A.MNGRNO=B.ENO;

• The SQL GROUP BY Statement

• The GROUP BY statement groups rows that have the
same values into summary rows, like "find the number
of customers in each country".

• The GROUP BY statement is often used with aggregate
functions (COUNT(), MAX(), MIN(), SUM(), AVG()) to
group the result-set by one or more columns.

• GROUP BY Syntax

• SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
ORDER BY column_name(s);

• SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country;

• SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country
ORDER BY COUNT(CustomerID) DESC;

• The SQL HAVING Clause

• The HAVING clause was added to SQL because
the WHERE keyword cannot be used with
aggregate functions.

• HAVING Syntax

• SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
HAVING condition
ORDER BY column_name(s);

• SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country
HAVING COUNT(CustomerID) > 5;

•

• The SQL EXISTS Operator

• The EXISTS operator is used to test for the existence of any
record in a subquery.

• The EXISTS operator returns TRUE if the subquery returns
one or more records.

• EXISTS Syntax

• SELECT column_name(s)
FROM table_name
WHERE EXISTS
(SELECT column_name FROM table_name WHERE conditio
n);

•

• SELECT SupplierName
FROM Suppliers
WHERE EXISTS (SELECT ProductName FROM P
roducts WHERE Products.SupplierID =
Suppliers.supplierID AND Price < 20);

• The SQL ANY and ALL Operators

• The ANY and ALL operators allow you to perform a
comparison between a single column value and a range
of other values.

• The SQL ANY Operator

• The ANY operator:

• returns a boolean value as a result

• returns TRUE if ANY of the subquery values meet the
condition

• ANY means that the condition will be true if the
operation is true for any of the values in the range.

• SELECT column_name(s)
FROM table_name
WHERE column_name operator ALL
(SELECT column_name
FROM table_name
WHERE condition);

• SQL SELECT INTO Examples

• The following SQL statement creates a backup
copy of Customers:

• SELECT * INTO CustomersBackup2017
FROM Customers;

• Normalization

• Normalization is the process of organizing the
data in the database.

• Normalization is used to minimize the
redundancy from a relation or set of relations. It
is also used to eliminate the undesirable
characteristics like Insertion, Update and
Deletion Anomalies.

• Normalization divides the larger table into the
smaller table and links them using relationship.

• The normal form is used to reduce redundancy
from the database table.

• Purpose of Normalization

• Normalization is the process of structuring
and handling the relationship between data to
minimize redundancy in the relational table
and avoid the unnecessary anomalies
properties from the database like insertion,
update and delete.

• It helps to divide large database tables into
smaller tables and make a relationship
between them. It can remove the redundant
data and ease to add, manipulate or delete
table fields.

• A normalization defines rules for the relational
table as to whether it satisfies the normal
form.

• A normal form is a process that evaluates
each relation against defined criteria and
removes the multivalued, joins, functional and
trivial dependency from a relation.

• If any data is updated, deleted or inserted, it
does not cause any problem for database
tables and help to improve the relational
table' integrity and efficiency.

• Objective of Normalization

• It is used to remove the duplicate data and database
anomalies from the relational table.

• Normalization helps to reduce redundancy and
complexity by examining new data types used in the
table.

• It is helpful to divide the large database table into
smaller tables and link them using relationship.

• It avoids duplicate data or no repeating groups into a
table.

• It reduces the chances for anomalies to occur in a
database.

• Types of Anomalies
Following are the types of anomalies that make the table inconsistency, loss of
integrity, and redundant data.

• 2. Insert Anomaly:

• An insert anomaly occurs in the relational database
when some attributes or data items are to be
inserted into the database without existence of other
attributes.

• For example, In the Student table, if we want to
insert a new courseID, we need to wait until the
student enrolled in a course. In this way, it is difficult
to insert new record in the table. Hence, it is called
insertion anomalies.

• 3. Update Anomalies:

• The anomaly occurs when duplicate data is updated
only in one place and not in all instances. Hence, it
makes our data or table inconsistent state.

• For example, suppose there is a student 'James' who
belongs to Student table. If we want to update the
course in the Student, we need to update the same
in the course table; otherwise, the data can
be inconsistent. And it reflects the changes in a table
with updated values where some of them will not.

• 4. Delete Anomalies:

• An anomaly occurs in a database table when some records are lost or

deleted from the database table due to the deletion of other records. For

example, if we want to remove Trent Bolt from the Student table, it also

removes his address, course and other details from the Student table.

Therefore, we can say that deleting some attributes can remove other

attributes of the database table.

• So, we need to avoid these types of anomalies from the tables and maintain

the integrity, accuracy of the database table. Therefore, we use the

normalization concept in the database management system.

Types of Normal Forms
There are the four types of normal forms:

• Closure Set of an Attribute

• It is used to find out how many attributes can be
searched .

• (AB)+ ---closure set of AB

• With AB what other attributes we can
search.

• This can be used for finding the candidate
key which is very important to understand
normalization.

First Normal Form
• Rules for First Normal Form

• The first normal form expects you to follow a few simple rules
while designing your database, and they are:

• Rule 1: Single Valued Attributes

• Each column of your table should be single valued which means
they should not contain multiple values. We will explain this
with help of an example later, let's see the other rules for now.

• Rule 2: Attribute Domain should not change

• This is more of a "Common Sense" rule. In each column the
values stored must be of the same kind or type.

• For example: If you have a column dob to save date of births of a set of
people, then you cannot or you must not save 'names' of some of them in
that column along with 'date of birth' of others in that column. It should
hold only 'date of birth' for all the records/rows.

• Rule 3: Unique name for Attributes/Columns
• This rule expects that each column in a table should have a unique name.

This is to avoid confusion at the time of retrieving data or performing any
other operation on the stored data.

• If one or more columns have same name, then the DBMS system will be left
confused.

• Rule 4: Order doesn't matters
• This rule says that the order in which you store the data in your table

doesn't matter.
•

The decomposition of the EMPLOYEE table into 1NF has been shown below:

• Second Normal Form (2NF)

• In the 2NF, relation must be in 1NF.

• All non prime attributes should depend on whole of candidate
key and not on partial key.

• If an attribute depends on only part of candidate key then it is
partial dependency.

• In 2NF no partial dependency should exists

• Example:

• R(A B C D)

• AB->D

• B->C

• Find essential attribute and C.key

• (AB)=ABCD

• Prime attribute—A B

• Non Prime attribute --- C D

• Prime attribute—A B Non Prime attribute --- C D

• R(A B C D)

• AB->D

• B->C

• AB->D D depends on AB ---no issue

• B->C C depends on only B and not AB, so it
is partial dependency.

• So table is not in 2NF

• So get this in 2NF(decomposition)

• R(A B C D)

• AB->D

• B->C

•

• R1(A B D) R2(B C)

• R(ABCDE)

• AB->C

• D->E

• AB->C IS PD

• D->E Is PD

• So not in 2NF

• So decompose

R(ABCDE)

AB->C
D->E

Try This

• R(ABCDE)

• A->B

• B->E

• C->D

• NO NOT IN
2NF

Decomposition

R(ABCDEFGHIJ)

AB->C
AD->GH
BD->EF
A->I
H->J

SO NOT IN 2NF

DECOMPOSITION

Third Normal Form (3NF)

A relation will be in 3NF if it is in 2NF and not contain any transitive
partial dependency.

3NF is used to reduce the data duplication. It is also used to
achieve the data integrity.

If there is no transitive dependency for non-prime attributes, then
the relation must be in third normal form.

A Table is said to be in 3NF only when it is in 2NF and should
not have any transitive dependency.

TD means a non prime attribute depending on non prime
attribute(like an irregular stud depends on another irregular stud)

R(ABC)
A->B
B->C

A- CKEY PA=A NPA=BC

A B C

A 1 X

B 1 X

C 1 X

D 2 Y

E 2 Y

F 3 Z

G 3 Z

A B

A 1

B 1

C 1

D 2

E 2

F 3

G 3

2nd Def of 3rd Normal form:

Every dependency from to

R(ABCBDE)

A->B
B->E
C->D
AC-ESSENTIAL
(AC)=ABCDE---C.KEY

3 NF

3 NF

R(ABCBDEFGHIJ)

AB->C
A->DE
B->F
F->GH
D->IJ

AB-ESSENTIAL ATTRI
(AB)=ABCDEFGHIJ

R(ABCDE)

AB->C
B->D
D->E

AB-ESSENTIAL
(AB)-ABCDE

BCNF—BOYCE CODD NORMAL FORM

R(ABC)

AB->C
C->B

(A)=*
(AB)=ABC
(AC)=ABC

AB-> NO PD
C->B NO PD BCOS C-PRIME B-IS PRIME
SO IN 2NF

AB->C --- NO TD
C->B----NO TD

If there exists FD from a->b
Then a should be super key and b can be
anything

A prime attribute shud not depend on prime
attribute

Decompose—R1(ab) R2(AC) R3(BC)

R(ABCDE)---CHECK THIS

AB->CD
D->A
BC->DE

R(ABCDE) ----CHECK THIS

BC->ADE
D->B

FUNCTIONAL DEPENDENCY

IF there exists FD from a->b

In the following cases

A B

1 A

2 B

3 C

4 D

5 E

6 F

A B

1 1

2 1

3 1

4 1

5 1

6 1

A B

1 A

1 B

1 C

1 D

1 E

1 F

A B

1 A

2 B

1 A

2 B

1 A

2 B

How to identify the Normal Form of a Relation

To solve the problem of identifying whether the Relation is in
1/2/3/BCNF we can start from BCNG then 3NF and so on. Exactly
reverse of the way we learned them.

Lets understand how to identify whether the Relation is in

BCNF.

3NF (No Transitive Dependency)

1)

R(A BC D E F G H)

AB->C
A->DE
B->F
F->GH

Essential Attributes: AB

(AB)+= ABCDEFGH

Candidate Key: AB

CHK BCNF
R(A BC D E F G H)

AB->C -- OK
A->DE -- NO SO NOT IN BCNF
B->F
F->GH

CHK 3NF
R(A BC D E F G H)

AB->C -- OK
A->DE -- NO SO NOT IN 3NF
B->F
F->GH

CHK 2NF

R(A BC D E F G H)

AB->C -- OK
A->DE -- PD SO NOT IN 2NF
B->F

F->GH SO IN 1NF

2 . R(A B C D E F)

AB->C
DC->AE
E->F

3. R(A B C D E)

CE->D
D->B
C->A

4. R(A B C D E F G H I)

AB->C
BD->EF
AD->GH
A->I

5. R(A B C D E)

AB->CD
D->A
BC->DE

6. R(A B C D E)

BC->ADE
D->B

7. R(V W X Y Z)

X->YV
Y->Z
Z->Y
VW->X

8. R(A B C D E F)

ABC->D
ABD->E
CD->F
CDF->B
BF->D

9. R(A B C)

A->B
B->C
C->A

Fourth normal form (4NF):

Fourth normal form (4NF) is a level of database normalization where
there are no non-trivial multivalued dependencies other than a
candidate key.

It builds on the first three normal forms (1NF, 2NF and 3NF) and the
Boyce-Codd Normal Form (BCNF).

It states that, in addition to a database meeting the requirements of
BCNF, it must not contain more than one multivalued dependency.

Properties – A relation R is in 4NF if and only if the following
conditions are satisfied:

1. It should be in the Boyce-Codd Normal Form (BCNF).
2. the table should not have any Multi-valued Dependency.

A table with a multivalued dependency violates the normalization
standard of Fourth Normal Form (4NK) because it creates
unnecessary redundancies and can contribute to inconsistent data.
To bring this up to 4NF, it is necessary to break this information into
two tables.
Here for certain values of course there are certain values for
instructor and textbook, but there exists no relation between
instructor and textbook. So it is called multi value dependency.
Course->-> instructor
Course ->-> textbook

COURSE INSTRUCTOR TEXTBOOK

MANAGEMENT WHITE ROBIN

GREEN PETER

BLACK

FINANCE GRAY WESTERN

GILFORD

So decompose so that those multivalue dependency is removed as
TEACHER RELATION AND TEXTBOOK RELATION

COURSE INSTRUCTOR

MANAGEMENT WHITE

MANAGEMENT GREEN

MANAGEMENT BLACK

FINANCE GRAY

COURSE TEXTBOOK

MANAGEMENT ROBIN

MANAGEMENT PETER

FINANCE WESTERN

FINANCE GILFORD

COURSE INSTRUCTOR TEXTBOOK

MANAGEMENT WHITE ROBIN

GREEN PETER

BLACK

FINANCE GRAY WESTERN

GILFORD

Fifth normal form (5NF)

A relation is in 5NF if it is in 4NF and not contains any
join dependency and joining should be lossless.

5NF is satisfied when all the tables are broken into as
many tables as possible in order to avoid redundancy.

5NF is also known as Project-join normal form (PJ/NF).

R Is decompose into R1 R2 R3

Then R1 join R2 or R1 join R3 or R2 join R3 should
get back the original relation R

There should not any loss of data in terms of tuples.

Loss Less Join Decomposition

If we decompose a Relation R into R1 and R2 then when we join them again we
should not have any loss of data , then it is termed as loss less decomposition.

R(ABCD) decomposed as R1(AB) and R2(D) then there is loss of data because we
do not have C in R1 nor R2.

If a relation R is decomposed into 2 relations.

R1 & R2 then it will be lossless if

1) attribute (R1) U attribute (R2) = attribute (R)

2) attribute (R1) attribute(R2) <> NULL

3) attribute (R1) attribute (R2)  attribute(R1)

or attribute(R1) attribute(R2)  attribute(R2)

A B

1 A

2 b

D

X

y

We are in loss of one column data ,so it is lossY decomposition.
Which is not allowed

A B C

1 a P

2 B Q

3 A R

A B

1 A

2 B

3 A

B C

A P

B Q

A r

A B C

1 A P

1 A R

2 B Q

3 A P

3 A R

A B C D E

A 122 1 P W

B 234 2 Q X

A 568 1 R Y

C 347 3 S Z

R1(ABC) R2(BCD) R3(DE) --RIGHT

R

UNIT-4
Transaction Management

A database transaction is a sequence of actions that are treated as a single unit
of work. These actions should either complete entirely or take no effect at all.
Transaction management is an important part of RDBMS-oriented enterprise
application to ensure data integrity and consistency. The concept of
transactions can be described with the following four key properties described
as ACID −

Atomicity − A transaction should be treated as a single unit of operation, which
means either the entire sequence of operations is successful or unsuccessful.

Consistency − This represents the consistency of the referential integrity of the
database, unique primary keys in tables, etc.

Isolation − There may be many transaction processing with the same data set at
the same time. Each transaction should be isolated from others to prevent data
corruption.

Durability − Once a transaction has completed, the results of this transaction
have to be made permanent and cannot be erased from the database due to
system failure.

• Atomicity
• It states that all operations of the transaction take place at once if not, the transaction is aborted.
• There is no midway, i.e., the transaction cannot occur partially. Each transaction is treated as one unit

and either run to completion or is not executed at all.
• Atomicity involves the following two operations:

• Abort: If a transaction aborts then all the changes made are not visible.

• Commit: If a transaction commits then all the changes made are visible.
• Example: Let's assume that following transaction T consisting of T1 and T2. A consists of Rs 600 and B

consists of Rs 300. Transfer Rs 100 from account A to account B.
• T1 T2

• Read(A)
•

A:= A-100
•

Write(A)
• Read(B)
•

Y:= Y+100

Write(B)After completion of the transaction, A consists of Rs 500 and B consists of Rs 400.

• If the transaction T fails after the completion of transaction T1 but before completion of transaction T2,
then the amount will be deducted from A but not added to B. This shows the inconsistent database
state. In order to ensure correctness of database state, the transaction must be executed in entirety.

Consistency

The integrity constraints are maintained so that the database is consistent before and
after the transaction.

The execution of a transaction will leave a database in either its prior stable state or a
new stable state.

The consistent property of database states that every transaction sees a consistent
database instance.

The transaction is used to transform the database from one consistent state to another
consistent state.

For example: The total amount must be maintained before or after the transaction.
Total before T occurs = 600+300=900
Total after T occurs= 500+400=900

Therefore, the database is consistent. In the case when T1 is completed but T2 fails, then
inconsistency will occur.

Isolation
It shows that the data which is used at the time of execution of a

transaction cannot be used by the second transaction until the first one

is completed.

In isolation, if the transaction T1 is being executed and using the data

item X, then that data item can't be accessed by any other transaction T2

until the transaction T1 ends.

The concurrency control subsystem of the DBMS enforced the isolation

property.

Durability
The durability property is used to indicate the performance of the

database's consistent state. It states that the transaction made the

permanent changes.

They cannot be lost by the erroneous operation of a faulty transaction or

by the system failure. When a transaction is completed, then the

database reaches a state known as the consistent state. That consistent

state cannot be lost, even in the event of a system's failure.

The recovery subsystem of the DBMS has the responsibility of Durability

property.

UNIT-4

Transactions in DBMS :
Transactions are a set of operations used to perform a logical set of work. A

transaction usually means that the data in the database has changed. One of

the major uses of DBMS is to protect the user’s data from system failures. It is

done by ensuring that all the data is restored to a consistent state when the

computer is restarted after a crash. The transaction is any one execution of the

user program in a DBMS. Executing the same program multiple times will

generate multiple transactions.

https://www.geeksforgeeks.org/dbms/

• Example –
Transaction to be performed to withdraw cash from an ATM
vestibule.

• Set of Operations :
Consider the following example for transaction operations as
follows.

• Example -ATM transaction steps.
• Transaction Start.
• Insert your ATM card.
• Select language for your transaction.
• Select Savings Account option.
• Enter the amount you want to withdraw.
• Enter your secret pin.
• Wait for some time for processing.
• Collect your Cash.
• Trasaction Completed.

• Three operations can be performed in a transaction as follows.
•

•
Read/Access data (R).

• Write/Change data (W).
• Commit.
• Example –

Transfer of 50₹ from Account A to Account B.
• Initially A= 500₹, B= 800₹.
• This data is brought to RAM from Hard Disk.
• R(A) -- 500 // Accessed from RAM.
• A = A-50 // Deducting 50₹ from A.
• W(A)--450 // Updated in RAM.
• R(B) -- 800 // Accessed from RAM.
• B=B+50 // 50₹ is added to B's Account.
• W(B) --850 // Updated in RAM.
• commit // The data in RAM is taken back to Hard Disk.

• Note –
The updated value of Account A = 450₹ and Account B = 850₹.

• All instructions before commit come under a partially committed
state and are stored in RAM. When the commit is read the data is
fully accepted and is stored in Hard Disk.

• If the data is failed anywhere before commit we have to go back
and start from the beginning. We can’t continue from the same
state. This is known as Roll Back.

• Uses of Transaction Management :
• The DBMS is used to schedule the access of data concurrently. It

means that the user can access multiple data from the database
without being interfered with each other. Transactions are used to
manage concurrency.

• It is also used to satisfy ACID properties.
• It is used to solve Read/Write Conflict.
• It is used to implement Recoverability, Serializability, and Cascading.
• Transaction Management is also used for Concurrency Control

Protocols and Locking of data.

• Transaction States :
Transactions can be implemented using SQL queries and
Server. In the below-given diagram, you can see how
transaction states works.

•

https://www.geeksforgeeks.org/transaction-states-in-dbms/

Active state

The active state is the first state of every transaction. In this state, the

transaction is being executed.

For example: Insertion or deletion or updating a record is done here.

But all the records are still not saved to the database.

Partially committed

In the partially committed state, a transaction executes its final

operation, but the data is still not saved to the database.

In the total mark calculation example, a final display of the total marks

step is executed in this state.

Committed

A transaction is said to be in a committed state if it executes all its

operations successfully. In this state, all the effects are now

permanently saved on the database system.

.
Failed state
If any of the checks made by the database recovery system fails, then the

transaction is said to be in the failed state.

In the example of total mark calculation, if the database is not able to fire a

query to fetch the marks, then the transaction will fail to execute.

Aborted
If any of the checks fail and the transaction has reached a failed state then the

database recovery system will make sure that the database is in its previous

consistent state. If not then it will abort or roll back the transaction to bring the

database into a consistent state.

If the transaction fails in the middle of the transaction then before executing

the transaction, all the executed transactions are rolled back to its consistent

state.

After aborting the transaction, the database recovery module will select one of

the two operations:

Re-start the transaction

Kill the transaction

.

Schedule
A series of operation from one transaction to another transaction is
known as schedule. It is used to preserve the order of the operation
in each of the individual transaction.

1. Serial Schedule

The serial schedule is a type of schedule where one transaction is

executed completely before starting another transaction. In the serial

schedule, when the first transaction completes its cycle, then the next

transaction is executed.

For example: Suppose there are two transactions T1 and T2 which

have some operations. If it has no interleaving of operations, then there

are the following two possible outcomes:

Execute all the operations of T1 which was followed by all the

operations of T2.

In the given (a) figure, Schedule A shows the serial schedule where T1

followed by T2.

In the given (b) figure, Schedule B shows the serial schedule where T2

followed by T1.

.
2. Non-serial Schedule

If interleaving of operations is allowed, then there will be non-serial

schedule.

It contains many possible orders in which the system can execute the

individual operations of the transactions.

In the given figure (c) and (d), Schedule C and Schedule D are the

non-serial schedules. It has interleaving of operations.

.

3. Serializable schedule
The serializability of schedules is used to find non-serial schedules that allow

the transaction to execute concurrently without interfering with one another.

It identifies which schedules are correct when executions of the transaction

have interleaving of their operations.

A non-serial schedule will be serializable if its result is equal to the result of its

transactions executed serially.

.

We cannot change sequence of statement execution , but we can go for context
switching as shown above. No multiple instructions are not executed, bcos processor
do not execute multiple execution at the same time. Does processor do more than
one task?
Serial scheduling when no context switching
Non serial scheduling when context switching happens

If we can convert a non serial schedule to a serial schedule then we can say it is
consistent schedule.
But if we cannot convert a non serial to serial schedule it does not mean it is
inconsistent
It is not guarantee that a student not passing EAMCET is poor ….

• If we can swap instructions in 2 transactions then we call them as non
conflicting instructions otherwise called as conflicting instructions.

• So we can swap instructions of non serial schedule to make it serial
schedule by swapping of non conflicting instructions.

• First we should find out when an instruction is conflicting and when an
instruction is non conflicting.

No prob No prob No Prob Problem

No prob

Problem here also

If problem exists means the statements are conflicting so no swapping can happen

If write and write happens and it is called blind write
,because they are not reading. But this is also conflicting
bcos the final value written in database is different.

2 instructions are said to be conflicting when they
belong to different transactions . But they must
operate on same data value and one of the instruction
should be write instruction.

How to convert this non serial to serial schedule

This is possible , bcos we can interchange

• Conflict serializability def:
Non serial schedule is changed to serial schedule by swapping
of non conflicting instructions then we say it is conflict seriali-
able. So it is consistent .

R(A) R(A) NO

R(A) W(B) NO

R(A) W(A) YES

W(B) W(A) NO

W(A) R(A) YES

T1 T2 T3

R(X)

R(Z)

W(Z)

R(Y)

R(Y)

W(Y)

W(X)

W(Z)

W(X)

STEP-1

STEP-2

STEP-3

STEP-4

CYCLIC SO NOT A
CONFLICT SERIALIZABLE

INCONSISTENT

CANNOT CONVERT NON
SERIAL TO SERIAL SCHEDULE

T1 T2 T3

R(X)

R(Y)

R(Y)

W(Y)

W(X)

W(X)

R(X)

W(X)

STEP-1

STEP-2

STEP-3

NON CYCLIC
SO CONSISTENT

IT IS CONFLICT SERIALIZABLE

T1 T2 T3

R(B)

R(C)

R(A)

W(A)

W(A)

W(B)

W(A)

W(B)

W(B)

W(C)

STEP-1

STEP-2

STEP-3

STEP-4

CYCLIC SO
NOT A CONFLICT SERIALIZABLE

INCONSISTENT

T1 T2 T3

R(A)

W(A)

R(A)

W(A)

W(B)

W(B)

W(A)

W(C)

W(A)

W(A)

W(B)

W(C)

T1 T2 T3

R(A)

W(B)

R(B)

W(A)

W(B)

W(C)

W(B)

R(C)

R(A)

W(C)

W(A)

R(A)

Ex:1 EX:2

What is concurrency in DBMS?

• Database concurrency is the ability of a database to allow multiple users

to affect multiple transactions. This is one of the main properties that

separates a database from other forms of data storage, like spreadsheets.

... Other users can read the file, but may not edit data.

What is the need of integrity and concurrency control in DBMS?

• To handle these conflicts we need concurrency control in DBMS, which

allows transactions to run simultaneously but handles them in such a way

so that the integrity of data remains intact.

• In a multi-user system, multiple users can access and use the

same database at one time, which is known as the concurrent

execution of the database. It means that the same database

is executed simultaneously on a multi-user system by different

users.

• Reasons for using Concurrency control method is DBMS: To

apply Isolation through mutual exclusion between conflicting

transactions. To resolve read-write and write-write conflict

issues. To preserve database consistency through constantly

preserving execution obstructions.

• Advantages of concurrency

• Reduced waiting time response time or turn around time.

• Increased throughput or resource utilization.

• If we run only one transaction at a time than the acid property is sufficient but it is

possible that when multiple transactions are executed concurrently than database

may become inconsistent.

• What is concurrency example?

• Concurrency is the tendency for things to happen at the same time in a system. ...

Figure 1: Example of concurrency at work: parallel activities that do not interact

have simple concurrency issues. It is when parallel activities interact or share the

same resources that concurrency issues become important.

• Purpose of Concurrency

• 1. To enforce isolation

• 2. To preserve DB consistency

• 3. To resolve R-W and W-W conflict

• Concurrency control techniques

• 1.Lock based protocol

• 2. Two-phase locking Protocol

• 3. Time stamp ordering Protocol

• 4. Multi version concurrency control

• 5. Validation concurrency control

• 1.Lock based protocol

• In this type of protocol, any transaction cannot read or write data
until it acquires an appropriate lock on it. There are two types of lock:

•

• 1. Shared lock:

• It is also known as a Read-only lock. In a shared lock, the data item
can only read by the transaction.

• It can be shared between the transactions because when the
transaction holds a lock, then it can't update the data on the data
item.

• 2. Exclusive lock:

• In the exclusive lock, the data item can be both reads as well as
written by the transaction.

• This lock is exclusive, and in this lock, multiple transactions do not
modify the same data simultaneously.

• If all the locks are granted then this protocol allows the

transaction to begin. When the transaction is completed then

it releases all the lock.

• If all the locks are not granted then this protocol allows the

transaction to rolls back and waits until all the locks are

granted.

S `X

S OK NO

X NO NO

LOCK COMPATIBILITY

T1 T2

LOCK X(B)

R(B)

B-50

W(B)

UNLOCK (B)

LOCK S(B)

R(B)

UNLOCK (B)

EXCLUSIVE
LOCK

SHARED
LOCK

• Note: Any number of transactions can hold
shared lock on one data item

• Exclusive lock can be used by one transaction
at a time.

Conversion of Locks

• Upgrading—R-Lock-Write-Lock

• Downgrading-write lock-read lock

Two-phase locking (2PL)

The two-phase locking protocol divides the execution phase of the

transaction into three parts.

• In the first part, when the execution of the transaction starts, it seeks

permission for the lock it requires.

• In the second part, the transaction acquires all the locks. The third phase is

started as soon as the transaction releases its first lock.

• In the third phase, the transaction cannot demand any new locks. It only

releases the acquired locks.

• There are two phases of 2PL:

• Growing phase: In the growing phase, a new lock on the data
item may be acquired by the transaction, but none can be
released.

• Shrinking phase: In the shrinking phase, existing lock held by the
transaction may be released, but no new locks can be acquired.

• In the below example, if lock conversion is allowed then the
following phase can happen:

• Upgrading of lock (from S(a) to X (a)) is allowed in growing phase.

• Downgrading of lock (from X(a) to S(a)) must be done in shrinking
phase.

• The following way shows how unlocking and locking work
with 2-PL.

• Transaction T1:

• Growing phase: from step 1-3

• Shrinking phase: from step 5-7

• Lock point: at 3

• Transaction T2:

• Growing phase: from step 2-6

• Shrinking phase: from step 8-9

• Lock point: at 6

Strict Two-phase locking (Strict-2PL)

• The first phase of Strict-2PL is similar to 2PL. In the first
phase, after acquiring all the locks, the transaction continues
to execute normally.

• The only difference between 2PL and strict 2PL is that Strict-
2PL does not release a lock after using it.

• Strict-2PL waits until the whole transaction to commit, and
then it releases all the locks at a time.

• Strict-2PL protocol does not have shrinking phase of lock
release.

•

Variation of 2PL locking protocol
• Conservative (static)2PL
• Acquires all locks before it starts execution
• Releases all the locks after commit. Deadlock free

• Strict 2PL
• Only exclusive locks cannot be released till commit

executes. Deadlock may occur.
•

• Rigorous 2PL: both shared and exclusive locks is not
released until transaction is committed, but acquires
locks as and when required. Deadlock may occure

•

Timestamp Ordering Protocol

• The Timestamp Ordering Protocol is used to order the transactions based

on their Timestamps. The order of transaction is nothing but the ascending

order of the transaction creation.

• The priority of the older transaction is higher that's why it executes first. To

determine the timestamp of the transaction, this protocol uses system time

or logical counter.

• The lock-based protocol is used to manage the order between conflicting

pairs among transactions at the execution time. But Timestamp based

protocols start working as soon as a transaction is created.

• Let's assume there are two transactions T1 and T2.

Suppose the transaction T1 has entered the system at 7 o

clock times and transaction T2 has entered the system at

9 o clock. T1 has the higher priority, so it executes first as

it is entered the system first.

• The timestamp ordering protocol also maintains the

timestamp of last 'read' and 'write' operation on a data.

• Time stamp based protocol is to avoid conflict during the execution

of the transaction.

• When multiple transactions are handled by the system and if it is

overcrowded then we need to think of a mechanism to handle the

situation.

• It is like we went to a sweet shop to buy hot jamun and the no of

number of jamun prepared are less than the number of people

asking for it.

• So what we can do is instead of making every one to ask for the

sweet and wait till it is prepared ,where by lot of crowding happens,

we can easily maintain the situation by allotting a token with

number.

• But if numbers are used there will be a confusion on the following

day as we may start with number :1 on next day.

• The same can be applied to temples where people wants to see

the god. Like Thirupati. Then it may so happen that the time

required will be a day or 2 or 10 days also.

• So instead of making the people to stay and stand in a queue we

have assigned with time band.

• This time band is the concept used in DBMS. Where we call it as

timestamp.

• The timestamp will be given for the transaction that enters

the system for execution

• This time stamp is the time of the clock in the system

including date part.

• So when such a TS(timestamp) is given it will be always

unique. As date time never repeats.

• The system gives a TS for transaction and also a TS for the

data item on which the operation is happening.

• So these are not the same.

• So TS for us is our Data of Birth.

• If the transaction enters the system at 10:00 am on

this date then the TS will be accordingly given as

21:05:2021:10:00:00 and if the transaction performs

an operation on data item Q at 11:00 then the TS will

be 21:05:2021:11:00:00

Ti request for Read(Q)

 if TS(Ti) < W_TS(Q) means Ti needs to read a value of Q that was already

overwritten. Hence request must be rejected and Ti

must rollback.

if TS(Ti) >= W_TS(Q) operation can be allowed .

Ti TS=5 T(x) TS=10

R(Q) has missed
this slot

W(Q)

Not allowed
here ---R(Q)

I case

Ti TS=12 T(x) TS=10

W(Q)

R(Q)

II case allowed as
your request is
after write
operation

IT IS SWAP OF CONFLICT INSTRN
w-r ON Q

if TS(Ti) > W_TS(Q)

.

Ti TS=12 T(x) TS=10

W(Q)

R(Q)

if TS(Ti) = W_TS(Q)

TS(Ti) = W_TS(Q) WILL BE EQUAL ONLY WHEN THE
same transaction has performed Write operation and
then Read operation ,but forget the Read operation. So
R(Q) is allowed here.

Because no 2 transactions TS will be same . TS will be
unique.

Ti request for Write(Q)

if TS(Ti) < R_TS(Q) means value of Q that Ti is producing was

needed previously and the system

assumed that the value would never be

produced hence reject and rollback

 If TS(Ti) < W_TS(Q) not allowed

Ti=5 Tx=10

W(Q) requested but not
performed

R(Q)

W(Q) not allowed

IT IS SWAP OF CONFLICT INSTRN
w-r ON Q

.
 If TS(Ti) < W_TS(Q)

Ti=5 Tx=10

W(Q) was suppose to happen here

W(Q)

W(Q) not allowed here

Remaining 2 cases the transaction is allowed.

TS(Ti)>= R_TS(Q)

TS(Ti)>=W_TS(Q)

SO we can say that the Timestamp protocol says that juniors

are allowed but not the seniors allowed to do mistakes.

Example

You went to college gate and started doing something and for

which other students ignored it

But if the same activity is done by the Professor of the college

then others will laugh or say something and so on.

Problems with Concurrency:

1.Dirty Read Problem

2.Unrepeated read problem

3.Phantom read problem

4.Lost update problem/write-write-conflict

Lets understand Dirty read problem in database with an example

Imagine there are 2 friends who are going to write exam and a friend X is poor in

studies when compared to Y , so X decides to copy the content from X in the

examination hall, so during the exam X allows Y to copy the content and then once Y

completes writing examination in the sense all the answers to all the questions , he

decides to give the paper to the faculty ,thinking everything is done.

So the results are announce Y fails in the examination and X pass the examination

with good marks.

So now Y thinks why he got less marks in the exam when he has copied all the

answers from Y.

When he asks the question to X , then X explains that after you left the examination

hall , and when I was going thru all the answers and modified most of them. So the

difference.

So what is the mistake done by Y , he should have submitting the answer sheet after

X submits, but it has not happened.

.

T1 T2

R(A)

W(A)

R(A)

COMMIT

…

…

…

…

COMMIT

Initial value of A in DB=10

A=10
A=A+1=11

T2 reads the
value of A as 11
which is not a
permanent value
(uncommitted
values)of A.

If T1 rollbacks
the transaction
then so value of
A will be back
with 10.

T2 cannot
commit bcos he
has committed.

Here T1 performs
some operations
and then commits
the transaction

So to avoid the problem of dirty read we need T2 to commit the
transaction after T1 commits.

Dirty read problem

Unrepeated Read Problem
Story /Example:

One day an young guy see that his parents are going out and because of that he feels

very happy and in this happiness he tries to do something thinking that he is only

present in the house, so he thinks of cooking a maggie and wanted to watch

ca`rtoon network.

In this process he takes maggie packet and cooker to cook the same, he puts the

cooker on the gas stove and then goes to watch cartoon nw.

When he comes back after 10 minutes and when he takes out the lid of the cooker

he observes that the cooker contains Rice with rajma and not maggie.

In the anger he tries to throw the rice bowl out and while doing so he gets a voice of

someone sitting on the fan saying it is me and I wants the rice with rajma.

Story ends here.

So what we want to understand here is thinking that he is alone he has done

something without knowing that there may be ghost in the house.

In the same way when we run any Transaction, every transaction feels that it is

getting executed and no other transactions are in process. And no will be no

transaction.

T1 T2

R(x)

R(x)

W(x)

R(x)

… ….

… …

… …

X=10

x=10

X=x+5

X=10

X=15

T2 is confused because in
two read it gets different
values as 10 and 15. it will
not understand why this is
happening as every
transaction feels that it is
the only transaction
working in the system.

Phantom Read Problem

Parents of the boy explains him that there is nothing like ghost and all it is your

thought .

As said earlier that the boy again see that his parents are going out and then he tries

to do something in the kitchen, and he take the cooker and the pasta packet and

cooks the same by placing it on a gas stove, with an ounce of doubt that there is be

a ghost in the house. The boy again goes and watch the cartoon nw. when he goes

back to the kitchen after sometime he observes that there is nothing in the kitchen.

.
T1 T2

R(x)

R(x)

Delete(x)

R(x)

Initial value of X =10

T1 read the value of X which is 10

T2 reads the value of X which is 10

Then T1 deletes X .

T2 now tries to read the value of X
and he finds that the particular
variable do not exists. This is called
phantom read problem.

Reading a value after it is deleted.

Phantom Read Problem

.
T1 T2

R(A)

W(A)

W(A)

Commit

Commit

Value of A=10

Then A is updated as
A=A+5. so A=15

Thinking that A=15 it
will perform commit
operation ,but what is
the value written in
database , it is 50 and
not 15.

So the value which T1
wants to write is not
stored in DB.

This is called W-W
conflict or Lost
update.

T2 without reading the
value of A will modify A
as 50 and commits ,
Without reading the
value of A , without
reading the value if we
write then it is called
blind write.

Lost Update / Write-Write Conflict

.
Validation Based Protocol

Validation phase is also known as optimistic concurrency control technique. In the

validation based protocol, the transaction is executed in the following three

phases:

Read phase: In this phase, the transaction T is read data from database and

executes the operations. It is used to read the value of various data items and

stores them in temporary local variables. It can perform all the write operations on

temporary variables without an update to the actual database.

Validation phase: In this phase, the temporary variable value will be validated

against the actual data to see if it violates the serializability.

Write phase: If the validation of the transaction is validated, then the temporary

results are written to the database or system otherwise the transaction is rolled

back.

This protocol is also called Optimistic protocol because it will continue

execution of the statement thinking that every thing will finish without any

problem .

This protocol maintains 3 timestamps

1. Timestamp of start of the transaction

2. Timestamp of the validation phase

3. Finish timestamp i.e end of write phase

This leads to starvation in the system as the transaction has to be roll

backed every time the validation fails. And once again we have to start a

fresh transaction .

There is no chance of deadlock as we are using timestamp to check for

serializability of the schedule and so on.

. Multiple Granularity

Let's start by understanding the meaning of granularity.

Granularity: It is the size of data item allowed to lock.

Multiple Granularity:

It can be defined as hierarchically breaking up the database into blocks

which can be locked.

The Multiple Granularity protocol enhances concurrency and reduces lock

overhead.

It maintains the track of what to lock and how to lock.

It makes easy to decide either to lock a data item or to unlock a data item.

This type of hierarchy can be graphically represented as a tree.

. For example: Consider a tree which has four levels of nodes.

The first level or higher level shows the entire database.

The second level represents a node of type area. The higher level database consists

of exactly these areas.

The area consists of children nodes which are known as files. No file can be present

in more than one area.

Finally, each file contains child nodes known as records. The file has exactly those records

that are its child nodes. No records represent in more than one file.

Hence, the levels of the tree starting from the top level are as follows:

Database

Area

File

Record

In this example, the highest level shows the entire database. The levels below are file,

record, and fields.

.

What is Data Recovery:-

It is the method of restoring the database to its correct state in the event of

a failure at the time of the transaction or after the end of a process.

dependability refers to both the flexibility of the DBMS to various kinds of

failure and its ability to recover from those failures.

To gain a better understanding of the possible problems you may encounter

in providing a consistent system, you will first learn about the need for

recovery and its types of failure, which usually occurs in a database

environment.

. What is the Need for Recovery of data?

The storage of data usually includes four types of media with an increasing

amount of reliability: the main memory, the magnetic disk, the magnetic

tape, and the optical disk. Many different forms of failure can affect

database processing and/or transaction, and each of them has to be dealt

with differently. Some data failures can affect the main memory only, while

others involve non-volatile or secondary storage also. Among the sources of

failure are:

Due to hardware or software errors, the system crashes, which ultimately

resulting in loss of main memory.

Failures of media, such as head crashes or unreadable media that results in

the loss of portions of secondary storage.

There can be application software errors, such as logical errors that are

accessing the database that can cause one or more transactions to abort or

fail.

Natural physical disasters can also occur, such as fires, floods, earthquakes,

or power failures.

Carelessness or unintentional destruction of data or directories by operators

or users.

Damage or intentional corruption or hampering of data (using malicious

software or files) hardware or software facilities.

Whatever the grounds of the failure are, there are two principal things that

you have to consider:

. Failure of main memory, including that database buffers.

Failure of the disk copy of that database.

Recovery Facilities

Every DBMS should offer the following facilities to help out with the recovery

mechanism:

Backup mechanism makes backup copies at a specific interval for the

database.

Logging facilities keep tracing the current state of transactions and any

changes made to the database.

Checkpoint facility allows updates to the database for getting the latest

patches to be made permanent and keep secure from vulnerability.

Recovery manager allows the database system for restoring the database to a

reliable and steady-state after any failure occurs.

Log-Based Recovery

The log is a sequence of records. Log of each transaction is maintained in

some stable storage so that if any failure occurs, then it can be recovered

from there.

If any operation is performed on the database, then it will be recorded in

the log.

But the process of storing the logs should be done before the actual

transaction is applied in the database.

Let's assume there is a transaction to modify the City of a student. The

following logs are written for this transaction.

• When the transaction is initiated, then it writes 'start' log.

• <Tn, Start>

• When the transaction modifies the City from 'Noida' to 'Bangalore', then

another log is written to the file.

• <Tn, City, 'Noida', 'Bangalore' >

• When the transaction is finished, then it writes another log to indicate the

end of the transaction.

• <Tn, Commit>

• There are two approaches to modify the database:

• .

. 1. Deferred database modification:

The deferred modification technique occurs if the transaction does not

modify the database until it has committed.

In this method, all the logs are created and stored in the stable storage, and

the database is updated when a transaction commits.

2. Immediate database modification:

The Immediate modification technique occurs if database modification

occurs while the transaction is still active.

In this technique, the database is modified immediately after every

operation. It follows an actual database modification.

Checkpoint

The checkpoint is a type of mechanism where all the previous logs are

removed from the system and permanently stored in the storage disk.

The checkpoint is like a bookmark. While the execution of the transaction,

such checkpoints are marked, and the transaction is executed then using the

steps of the transaction, the log files will be created.

When it reaches to the checkpoint, then the transaction will be updated

into the database, and till that point, the entire log file will be removed from

the file. Then the log file is updated with the new step of transaction till next

checkpoint and so on.

The checkpoint is used to declare a point before which the DBMS was in the

consistent state, and all transactions were committed.

.

. Recovery using Checkpoint

In the following manner, a recovery system recovers the database from this failure:

The recovery system reads log files from the end to start. It reads log files from T4 to
T1.
Recovery system maintains two lists, a redo-list, and an undo-list.
The transaction is put into redo state if the recovery system sees a log with <Tn,
Start> and <Tn, Commit> or just <Tn, Commit>. In the redo-list and their previous
list, all the transactions are removed and then redone before saving their logs.

• Deadlock in DBMS

• A deadlock is a condition where two or more transactions are waiting indefinitely for one

another to give up locks. Deadlock is said to be one of the most feared complications in

DBMS as no task ever gets finished and is in waiting state forever.

• For example: In the student table, transaction T1 holds a lock on some rows and needs to

update some rows in the grade table. Simultaneously, transaction T2 holds locks on some

rows in the grade table and needs to update the rows in the Student table held by

Transaction T1.

• Now, the main problem arises. Now Transaction T1 is waiting for T2 to release its lock and

similarly, transaction T2 is waiting for T1 to release its lock. All activities come to a halt

state and remain at a standstill. It will remain in a standstill until the DBMS detects the

deadlock and aborts one of the transactions.

•

• Concurrency control means that multiple transactions can be executed at the same time and

then the interleaved logs occur. But there may be changes in transaction results so maintain

the order of execution of those transactions.

• During recovery, it would be very difficult for the recovery system to backtrack all the logs

and then start recovering.

• Recovery with concurrent transactions can be done in the following four ways.

• Interaction with concurrency control

• Transaction rollback

• Checkpoints

• Restart recovery

• Interaction with concurrency control :

• In this scheme, the recovery scheme depends greatly on the concurrency control scheme

that is used. So, to rollback a failed transaction, we must undo the updates performed by the

transaction.

•

https://www.geeksforgeeks.org/concurrency-control-in-dbms/

• Transaction rollback :

• In this scheme, we rollback a failed transaction by using the log.

• The system scans the log backward a failed transaction, for every log record found in the log the

system restores the data item.

• Checkpoints :

• Checkpoints is a process of saving a snapshot of the applications state so that it can restart from

that point in case of failure.

• Checkpoint is a point of time at which a record is written onto the database form the buffers.

• Checkpoint shortens the recovery process.

• When it reaches the checkpoint, then the transaction will be updated into the database, and till

that point, the entire log file will be removed from the file. Then the log file is updated with the

new step of transaction till the next checkpoint and so on.

• The checkpoint is used to declare the point before which the DBMS was in the consistent state, and

all the transactions were committed.

• To ease this situation, ‘Checkpoints‘ Concept is used by the most DBMS.

• In this scheme, we used checkpoints to reduce the number of log records that the system

must scan when it recovers from a crash.

• In a concurrent transaction processing system, we require that the checkpoint log record be

of the form <checkpoint L>, where ‘L’ is a list of transactions active at the time of the

checkpoint.

• A fuzzy checkpoint is a checkpoint where transactions are allowed to perform updates even

while buffer blocks are being written out.

• Restart recovery :

• When the system recovers from a crash, it constructs two lists.

• The undo-list consists of transactions to be undone, and the redo-list consists of transaction

to be redone.

• The system constructs the two lists as follows: Initially, they are both empty. The system

scans the log backward, examining each record, until it finds the first <checkpoint> record.

https://www.geeksforgeeks.org/log-based-recovery-in-dbms/

• UNIT- 5

File Organization

o The File is a collection of records. Using the primary key, we can access

the records. The type and frequency of access can be determined by the

type of file organization which was used for a given set of records.

o File organization is a logical relationship among various records. This

method defines how file records are mapped onto disk blocks.

o File organization is used to describe the way in which the records are

stored in terms of blocks, and the blocks are placed on the storage

medium.

o The first approach to map the database to the file is to use the several

files and store only one fixed length record in any given file. An

alternative approach is to structure our files so that we can contain

multiple lengths for records.

o Files of fixed length records are easier to implement than the files of

variable length records.

Objective of file organization

o It contains an optimal selection of records, i .e . , records can be selected

as fast as possible.

o To perform insert, delete or update transaction on the records should

be quick and easy.

o The duplicate records cannot be induced as a result of insert, update

or delete.

o For the minimal cost of storage, records should be stored efficiently.

Types of file organization:

File organization contains various methods. These particular methods have
pros and cons on the basis of access or selection. In the file organization, the
programmer decides the best-suited file organization method according to his
requirement.

Types of file organization are as follows:

o Sequential file organization

o Heap file organization

o Hash file organization

o B+ file organization

o Indexed sequential access method (ISAM)

o Cluster file organization

Sequential File Organization

This method is the easiest method for file organization. In this method, files
are stored sequentially. This method can be implemented in two ways:

1. Pile File Method:

o It is a quite simple method. In this method, we store the record in a

sequence, i .e . , one after another. Here, the record will be inserted in the

order in which they are inserted into tables.

o In case of updating or deleting of any record, the record will be searched

in the memory blocks. When it is found, then it will be marked for

deleting, and the new record is inserted.

https://www.javatpoint.com/dbms-sequential-file-organization
https://www.javatpoint.com/dbms-heap-file-organization
https://www.javatpoint.com/dbms-hash-file-organization
https://www.javatpoint.com/dbms-b-plus-file-organization
https://www.javatpoint.com/dbms-indexed-sequential-access-method
https://www.javatpoint.com/dbms-cluster-file-organization

Insertion of the new record:

Suppose we have four records R1, R3 and so on up to R9 and R8 in a
sequence. Hence, records are nothing but a row in the table. Suppose we want
to insert a new record R2 in the sequence, then it will be placed at the end of
the file. Here, records are nothing but a row in any table.

2. Sorted File Method:

o In this method, the new record is always inserted at the file's end, and

then it will sort the sequence in ascending or descending order. Sorting

of records is based on any primary key or any other key.

o In the case of modification of any record, it will update the record and

then sort the file, and lastly, the updated record is placed in the right

place.

Insertion of the new record:

Suppose there is a preexisting sorted sequence of four records R 1, R3 and so
on upto R6 and R7. Suppose a new record R2 has to be inserted in the
sequence, then it will be inserted at the end of the file, and then it will sort
the sequence.

Pros of sequential file organization

o It contains a fast and efficient method for the huge amount of data.

o In this method, files can be easily stored in cheaper storage mechanism

like magnetic tapes.

o It is simple in design. It requires no much effort to store the data.

o This method is used when most of the records have to be accessed like

grade calculation of a student, generating the salary slip, etc.

o This method is used for report generation or statistical calculations.

Cons of sequential file organization

o It will waste time as we cannot jump on a particular record that is

required but we have to move sequentially which takes our time.

o Sorted file method takes more time and space for sorting the records.

Heap file organization

o It is the simplest and most basic type of organization. It works with data

blocks. In heap file organization, the records are inserted at the file's

end. When the records are inserted, it doesn't require the sorting and

ordering of records.

o When the data block is full, the new record is stored in some other

block. This new data block need not to be the very next data block, but

it can select any data block in the memory to store new records. The

heap file is also known as an unordered file .

o In the file, every record has a unique id, and every page in a file is of

the same size. It is the D B M S responsibility to store and manage the

new records.

Insertion of a new record

Suppose we have five records R1, R3, R6, R4 and R5 in a heap and suppose
we want to insert a new record R2 in a heap. If the data block 3 is full then it
will be inserted in any of the database selected by the D B M S , let's say data
block 1.

If we want to search, update or delete the data in heap file organization, then
we need to traverse the data from staring of the file till we get the requested
record.

If the database is very large then searching, updating or deleting of record will
be time-consuming because there is no sorting or ordering of records. In the
heap file organization, we need to check all the data until we get the requested
record.

Pros of Heap file organization

o It is a very good method of file organization for bulk insertion. If there

is a large number of data which needs to load into the database at a

time, then this method is best suited.

o In case of a small database, fetching and retrieving of records is faster

than the sequential record.

Cons of Heap file organization

o This method is inefficient for the large database because it takes time

to search or modify the record.

o

o This method is inefficient for large databases.

Hash File Organization

Hash File Organization uses the computation of hash function on some fields
of the records. The hash function's output determines the location of disk
block where the records are to be placed.

When a record has to be received using the hash key columns, then the
address is generated, and the whole record is retrieved using that address. In
the same way, when a new record has to be inserted, then the address is
generated using the hash key and record is directly inserted. The same
process is applied in the case of delete and update.

In this method, there is no effort for searching and sorting the entire file. In
this method, each record will be stored randomly in the memory.

B+ File Organization

o B+ tree file organization is the advanced method of an indexed

sequential access method. It uses a tree-like structure to store records

in File.

o It uses the same concept of key-index where the primary key is used to

sort the records. For each primary key, the value of the index is

generated and mapped with the record.

o The B+ tree is similar to a binary search tree (BST), but it can have more

than two children. In this method, all the records are stored only at the

leaf node. Intermediate nodes act as a pointer to the leaf nodes . They

do not contain any records.

The above B+ tree shows that:

o There is one root node of the tree, i .e . , 25.

o There is an intermediary layer with nodes. They do not store the actual

record. They have only pointers to the leaf node.

o The nodes to the left of the root node contain the prior value of the root

and nodes to the right contain next value of the root, i .e. , 15 and 30

respectively.

o There is only one leaf node which has only values, i .e. , 10, 12, 17, 20,

24, 27 and 29.

o Searching for any record is easier as all the leaf nodes are balanced.

o In this method, searching any record can be traversed through the

single path and accessed easily.

Pros of B+ tree file organization

o In this method, searching becomes very easy as all the records are

stored only in the leaf nodes and sorted the sequential linked list.

o Traversing through the tree structure is easier and faster.

o The size of the B+ tree has no restrictions, so the number of records

can increase or decrease and the B+ tree structure can also grow or

shrink.

o It is a balanced tree structure, and any insert/update/delete does not

affect the performance of tree.

Cons of B+ tree file organization

o This method is inefficient for the static method.

Indexed sequential access method (ISAM)

ISAM method is an advanced sequential file organization. In this method,
records are stored in the file using the primary key. An index value is
generated for each primary key and mapped with the record. This index
contains the address of the record in the file.

If any record has to be retrieved based on its index value, then the address of
the data block is fetched and the record is retrieved from the memory.

Pros of ISAM:

o In this method, each record has the address of its data block, searching

a record in a huge database is quick and easy.

o This method supports range retrieval and partial retrieval of records.

Since the index is based on the primary key values, we can retrieve the

data for the given range of value. In the same way, the partial value can

also be easily searched, i .e. , the student name starting with 'JA' can be

easily searched.

Cons of ISAM

o This method requires extra space in the disk to store the index value.

o When the new records are inserted, then these files have to be

reconstructed to maintain the sequence.

o When the record is deleted, then the space used by it needs to be

released. Otherwise, the performance of the database will slow down.

Cluster file organization

o When the two or more records are stored in the same file, it is known

as clusters. These files will have two or more tables in the same data

block, and key attributes which are used to map these tables together

are stored only once.

o This method reduces the cost of searching for various records in

different files.

o The cluster file organization is used when there is a frequent need for

joining the tables with the same condition. These joins will give only a

few records from both tables. In the given example, we are retrieving

the record for only particular departments. This method can't be used

to retrieve the record for the entire department.

In this method, we can directly insert, update or delete any record. Data is
sorted based on the key with which searching is done. Cluster key is a type
of key with which joining of the table is performed.

Types of Cluster file organization:

Cluster file organization is of two types:

1. Indexed Clusters:

In indexed cluster, records are grouped based on the cluster key and stored
together. The above EM PLO YE E and DEPARTMENT relationship is an
example of an indexed cluster. Here, all the records are grouped based on the
cluster key- DEP_ID and all the records are grouped.

2. Hash Clusters:

It is similar to the indexed cluster. In hash cluster, instead of storing the
records based on the cluster key, we generate the value of the hash key for
the cluster key and store the records with the same hash key value.

Pros of Cluster file organization

o The cluster file organization is used when there is a frequent request

for joining the tables with same joining condition.

o It provides the efficient result when there is a 1:M mapping between the

tables.

Cons of Cluster file organization

o This method has the low performance for the very large database.

o If there is any change in joining condition, then this method cannot use.

If we change the condition of joining then traversing the file takes a lot

of time.

o This method is not suitable for a table with a 1:1 condition.

o Indexing in D B M S

o Indexing is used to optimize the performance of a database by

minimizing the number of disk accesses required when a query is

processed.

o The index is a type of data structure. It is used to locate and access

the data in a database table quickly.

Index structure:

Indexes can be created using some database columns.

o The first column of the database is the search key that contains a

copy of the primary key or candidate key of the table. The values of

the primary key are stored in sorted order so that the corresponding

data can be accessed easily.

o The second column of the database is the data reference. It contains

a set of pointers holding the address of the disk block where the value

of the particular key can be found.

Indexing Methods

Ordered indices

The indices are usually sorted to make searching faster. The indices which

are sorted are known as ordered indices.

Example : Suppose we have an employee table with thousands of record

and each of which is 10 bytes long. If their IDs start with 1, 2 , 3. . . . and so

on and we have to search student with ID-543.

o In the case of a database with no index, we have to search the disk

block from starting till it reaches 543. The D B M S will read the record

after reading 543*10=5430 bytes.

o In the case of an index, we will search using indexes and the D B M S

will read the record after reading 542*2= 1084 bytes which are very

less compared to the previous case .

Primary Index

o If the index is created on the basis of the primary key of the table,

then it is known as primary indexing. These primary keys are unique

to each record and contain 1:1 relation between the records.

o As primary keys are stored in sorted order, the performance of the

searching operation is quite efficient.

o The primary index can be classified into two types: Dense index and

Sparse index.

Dense index

o The dense index contains an index record for every search key value

in the data file. It makes searching faster.

o In this, the number of records in the index table is same as the

number of records in the main table.

o It needs more space to store index record itself. The index records

have the search key and a pointer to the actual record on the disk.

Sparse index

o In the data file, index record appears only for a few items. Each item

points to a block.

o In this, instead of pointing to each record in the main table, the index

points to the records in the main table in a gap.

Clustering Index

o A clustered index can be defined as an ordered data file. Sometimes the

index is created on non-primary key columns which may not be unique

for each record.

o In this case, to identify the record faster, we will group two or more

columns to get the unique value and create index out of them. This

method is called a clustering index.

o The records which have similar characteristics are grouped, and

indexes are created for these group.

Example : suppose a company contains several employees in each
department. Suppose we use a clustering index, where all employees which
belong to the same Dept_ID are considered within a single cluster, and index
pointers point to the cluster as a whole. Here Dept_Id is a non-unique key.

The previous schema is little confusing because one disk block is shared by
records which belong to the different cluster. If we use separate disk block for
separate clusters, then it is called better technique.

Secondary Index

In the sparse indexing, as the size of the table grows, the size of mapping also
grows. These mappings are usually kept in the primary memory so that
address fetch should be faster. Then the secondary memory searches the
actual data based on the address got from mapping. If the mapping size grows
then fetching the address itself becomes slower. In this case, the sparse index
will not be efficient. To overcome this problem, secondary indexing is
introduced.

In secondary indexing, to reduce the size of mapping, another level of indexing
is introduced. In this method, the huge range for the columns is selected
initially so that the mapping size of the first level becomes small. Then each
range is further divided into smaller ranges. The mapping of the first level is
stored in the primary memory, so that address fetch is faster. The mapping of
the second level and actual data are stored in the secondary memory (hard
disk).

For example:

o If you want to find the record of roll 111 in the diagram, then it will

search the highest entry which is smaller than or equal to 111 in the

first level index. It will get 100 at this level.

o Then in the second index level, again it does max (111) <= 111 and gets
110. Now using the address 110, it goes to the data block and starts

searching each record till it gets 111.

o This is how a search is performed in this method. Inserting, updating

or deleting is also done in the same manner.

B+ Tree

o The B+ tree is a balanced binary search tree. It follows a multi-level

index format.

o In the B+ tree, leaf nodes denote actual data pointers. B+ tree ensures

that all leaf nodes remain at the same height.

o In the B+ tree, the leaf nodes are linked using a link list. Therefore, a

B+ tree can support random access as well as sequential access.

Structure of B+ Tree

o In the B+ tree, every leaf node is at equal distance from the root node.

The B+ tree is of the order n where n is fixed for every B + tree.

o It contains an internal node and leaf node.

Internal node

o An internal node of the B+ tree can contain at least n/2 record pointers

except the root node.

o At most, an internal node of the tree contains n pointers.

Leaf node

o The leaf node of the B+ tree can contain at least n/2 record pointers

and n/2 key values.

o At most, a leaf node contains n record pointer and n key values.

o Every leaf node of the B+ tree contains one block pointer P to point to

next leaf node.

Searching a record in B+ Tree

Suppose we have to search 55 in the below B+ tree structure. First, we will
fetch for the intermediary node which will direct to the leaf node that can
contain a record for 55.

So, in the intermediary node, we will find a branch between 50 and 75 nodes.
Then at the end, we will be redirected to the third leaf node. Here D B M S will
perform a sequential search to find 55.

B+ Tree Insertion

Suppose we want to insert a record 60 in the below structure. It will go to the
3rd leaf node after 55. It is a balanced tree, and a leaf node of this tree is
already full, so we cannot insert 60 there.

In this case, we have to split the leaf node, so that it can be inserted into tree
without affecting the fill factor, balance and order.

The 3rd leaf node has the values (50, 55, 60, 65, 70) and its current root node
is 50. We will split the leaf node of the tree in the middle so that its balance
is not altered. So we can group (50, 55) and (60, 65, 70) into 2 leaf nodes.

If these two has to be leaf nodes, the intermediate node cannot branch from
50. It should have 60 added to it, and then we can have pointers to a new leaf
node.

This is how we can insert an entry when there is overflow. In a normal
scenario, it is very easy to find the node where it fits and then place it in that
leaf node.

B+ Tree Deletion

Suppose we want to delete 60 from the above example. In this case , we have
to remove 60 from the intermediate node as well as from the 4th leaf node too.
If we remove it from the intermediate node, then the tree will not satisfy the
rule of the B+ tree. So we need to modify it to have a balanced tree.

After deleting node 60 from above B+ tree and re-arranging the nodes, it will
show as follows:

Hashing

In a huge database structure, it is very inefficient to search all the index
values and reach the desired data. Hashing technique is used to calculate the
direct location of a data record on the disk without using index structure.

In this technique, data is stored at the data blocks whose address is generated
by using the hashing function. The memory location where these records are
stored is known as data bucket or data blocks.

In this, a hash function can choose any of the column value to generate the
address. Most of the time, the hash function uses the primary key to generate
the address of the data block. A hash function is a simple mathematical
function to any complex mathematical function. We can even consider the
primary key itself as the address of the data block. That means each row
whose address will be the same as a primary key stored in the data block.

The above diagram shows data block addresses same as primary key value.
This hash function can also be a simple mathematical function like
exponential, mod, cos, s in, etc. Suppose we have mod (5) hash function to
determine the address of the data block. In this case, it applies mod (5) hash
function on the primary keys and generates 3, 3, 1, 4 and 2 respectively, and
records are stored in those data block addresses.

Types of Hashing:

o Static Hashing

o Dynamic Hashing

Static Hashing

In static hashing, the resultant data bucket address will always be the same.
That means if we generate an address for EMP_ID =103 using the hash
function mod (5) then it will always result in same bucket address 3. Here,
there will be no change in the bucket address.

Hence in this static hashing, the number of data buckets in memory remains
constant throughout. In this example, we will have five data buckets in the
memory used to store the data.

https://www.javatpoint.com/dbms-static-hashing
https://www.javatpoint.com/dbms-dynamic-hashing

Operations of Static Hashing

o Searching a record

When a record needs to be searched, then the same hash function retrieves
the address of the bucket where the data is stored.

o Insert a Record

When a new record is inserted into the table, then we will generate an address
for a new record based on the hash key and record is stored in that location.

o Delete a Record

To delete a record, we will first fetch the record which is supposed to be
deleted. Then we will delete the records for that address in memory.

o Update a Record

To update a record, we will first search it using a hash function, and then the
data record is updated.

If we want to insert some new record into the file but the address of a data
bucket generated by the hash function is not empty, or data already exists in
that address. This situation in the static hashing is known as bucket
overflow. This is a critical situation in this method.

To overcome this situation, there are various methods. Some commonly used
methods are as follows:

1 . Open Hashing

When a hash function generates an address at which data is already stored,
then the next bucket will be allocated to it. This mechanism is called as Linear
Probing.

For example: suppose R3 is a new address which needs to be inserted, the
hash function generates address as 112 for R3. But the generated address is
already full. So the system searches next available data bucket, 113 and
assigns R3 to it.

2. Close Hashing

When buckets are full, then a new data bucket is allocated for the same hash
result and is linked after the previous one. This mechanism is known
as Overflow chaining .

For example: Suppose R3 is a new address which needs to be inserted into
the table, the hash function generates address as 110 for it. But this bucket
is full to store the new data. In this case, a new bucket is inserted at the end
of 110 buckets and is linked to it.

Dynamic Hashing

o The dynamic hashing method is used to overcome the problems of static

hashing like bucket overflow.

o In this method, data buckets grow or shrink as the records increases

or decreases. This method is also known as Extendable hashing

method.

o This method makes hashing dynamic, i.e. , it allows insertion or deletion

without resulting in poor performance.

How to search a key

o First, calculate the hash address of the key.

o Check how many bits are used in the directory, and these bits are called

as i.

o Take the least significant i bits of the hash address. This gives an index

of the directory.

o Now using the index, go to the directory and find bucket address where

the record might be.

How to insert a new record

o Firstly, you have to follow the same procedure for retrieval, ending up

in some bucket.

o If there is still space in that bucket, then place the record in it.

o If the bucket is full, then we will split the bucket and redistribute the

records.

For example:

Consider the following grouping of keys into buckets, depending on the prefix
of their hash address:

The last two bits of 2 and 4 are 00. So it will go into bucket B 0. The last two
bits of 5 and 6 are 01, so it will go into bucket B1. The last two bits of 1 and
3 are 10, so it will go into bucket B2. The last two bits of 7 are 11, so it will
go into B3.

Insert key 9 with hash address 10001 into the above structure:

o Since key 9 has hash address 10001, it must go into the first bucket.

But bucket B1 is full, so it will get split.

o The splitting will separate 5, 9 from 6 since last three bits of 5, 9 are

001, so it will go into bucket B1, and the last three bits of 6 are 101, so

it will go into bucket B5.

o Keys 2 and 4 are still in B0. The record in B0 pointed by the 000 and

100 entry because last two bits of both the entry are 00.

o Keys 1 and 3 are still in B2. The record in B2 pointed by the 010 and

110 entry because last two bits of both the entry are 10.

o Key 7 are still in B 3. The record in B3 pointed by the 111 and 011 entry

because last two bits of both the entry are 11.

Advantages of dynamic hashing

o In this method, the performance does not decrease as the data grows in

the system. It simply increases the size of memory to accommodate the

data.

o In this method, memory is well utilized as it grows and shrinks with the

data. There will not be any unused memory lying.

o This method is good for the dynamic database where data grows and

shrinks frequently.

Disadvantages of dynamic hashing

o In this method, if the data size increases then the bucket size is also

increased. These addresses of data will be maintained in the bucket

address table. This is because the data address will keep changing as

buckets grow and shrink . If there is a huge increase in data,

maintaining the bucket address table becomes tedious.

o In this case, the bucket overflow situation will also occur. But it might

take little time to reach this situation than static hashing .

Duplicate tuples

